Friarage Community Primary School
Proposed MUGA, Scarborough, North Yorkshire

Archaeological Evaluation Report

Oxford Archaeology North

Jacobs Engineering UK Ltd

February 2010

Issue No: 09/1033
OA North Job No: L10196
NGR: TA 0451 8881
CONTENTS

SUMMARY.. 2

ACKNOWLEDGEMENTS... 3

1. **INTRODUCTION**.. 4
 1.1 Circumstances of Project.. 4
 1.2 Location and Geology... 5
 1.3 Historical and Archaeological Background... 5

2. **METHODOLOGY**.. 8
 2.1 Trial Trenches... 8
 2.2 Finds.. 8
 2.3 Palaeoenvironmental.. 9
 2.4 Archive.. 10

3. **TRIAL TRENCH RESULTS**... 11
 3.1 Introduction.. 11
 3.2 Trench 1... 11
 3.3 Trench 2... 11
 3.4 Trench 3... 12
 3.5 Trench 4... 12
 3.6 Trench 5... 13
 3.7 Finds.. 15
 3.8 Palaeoenvironmental Samples... 19

4. **CONCLUSIONS**... 22
 4.1 Discussion... 22

5. **BIBLIOGRAPHY**... 24
 5.1 Primary Sources... 24
 5.2 Secondary Sources.. 24

APPENDIX 1: **PROJECT SPECIFICATION**.. 27

APPENDIX 2: **TRENCH AND CONTEXT DESCRIPTIONS**... 28

APPENDIX 3: **MATRICES**.. 33

ILLUSTRATIONS... 37

List of Figures.. 37
List of Plates... 37
SUMMARY

As part of the Government’s Primary Capital Programme, North Yorkshire County Council has applied for planning permission for works to improve the Friarage Community Primary School in Scarborough (NGR TA 0451 8881; Fig 1). Part of these works include the provision of a Multi-User Games Area (MUGA) within the current playground. The Friarage School is located within the medieval town of Scarborough, on the approximate site of the former Franciscan Friary. As such, North Yorkshire County Archaeological Services (NYCAS) requested a programme of desk-based assessment and evaluation excavations, in the form of trial trenches, to assess the impact of the development on potential archaeological remains.

Jacobs Engineering UK Ltd (Jacobs) was commissioned by North Yorkshire County Council to compile a desk-based assessment for the site (Jacobs 2009a). Following the results of this, Jacobs was requested to prepare a Written Scheme of Investigation (WSI) for the required archaeological trial trenching of the site. Oxford Archaeology North were subsequently commissioned by North Yorkshire County Council to undertake the excavation of the trial trenches.

In total, five trial trenches were excavated in the area of the proposed MUGA, measuring 5m in length and 2m wide, in October of 2009. The maximum depth of each trench excavated took into account the depth of the potential impact of the proposed development; glacial till was not, therefore, located in all of the trial trenches, as it proved to be at some depth.

Sediments considered to be within a former stream, called the Damyot, were located in Trenches 2, 3 and 5. Most of these sediments were the result of post-medieval backfilling of the stream and levelling of the area. The stream is known to have been culverted by the Friary in the thirteenth or fourteenth centuries. Although no evidence for this culvert was found in these evaluation trenches. It had previously been located in excavations to the east of the site (Pearson 2005, 115).

The lower levels of the stream were waterlogged and potentially medieval deposits containing well-preserved organic remains were located in Trench 5; these produced medieval ceramics from the thirteenth and fourteenth centuries, as well as a fragment of structural timber. The exact course of the Damyot, and a reconstruction of the medieval land form, can only be established by further work. Both the medieval and early post-medieval deposits proved to have a very high potential for the recovery of biological remains from environmental samples, the analysis of which would be of regional significance.

Remains of nineteenth century terrace buildings, depicted on the 1891 Ordnance Survey map, were located in each trench, and took the form of foundations, brick floors, or demolition debris. The level of glacial till, located in Trenches 1, 2 and 4, varied greatly. Both human and natural agents (ie in the form of the Damyot) have clearly greatly affected the form of the landscape in the area. The present land form at the site is entirely artificial, being created in the seventeenth or eighteenth centuries.
ACKNOWLEDGEMENTS

Oxford Archaeology North (OA North) would like to thank Jonathan Dempsey of Jacobs for commissioning the project. We would also like to thank Joy Orah and Paul Smith (caretaker) of the Friarage Community Primary school for their considerable support throughout the project.

The archaeological evaluation excavations was undertaken by Andy Bates, Paul Clarke and Jason Hall. The report was compiled by Andy Bates. The finds were assessed by Chris Howard-Davis and Andy Bates. The palaeoenvironmental samples were assessed by Elizabeth Huckerby, with preliminary identification of the fish bone by Stephen Rowland. The drawings were produced by Alix Sperr. We would also like to thank East Coast Surfacing for the reinstatement.

The project was managed by Jamie Quartermaine, who also edited the report.
1. INTRODUCTION

1.1 CIRCUMSTANCES OF PROJECT

1.1.1 As part of the Government’s Primary Capital Programme, North Yorkshire County Council has applied for planning permission for works to improve the Friarage Community Primary School in Scarborough (NGR TA 04518881; Fig 1). Part of these works includes the provision of a Multi-User Games Area (MUGA) in the current playground.

1.1.2 The Friarage School is located within the medieval town of Scarborough, notably on the approximate site of the former Franciscan Friary (North Yorkshire County Council Historic Environment Record Reference Nos MNY9416, HER 9417, ENY4478, ENY3245 MNY9419). The construction of the MUGA, therefore, has the potential to have an adverse impact on unidentified archaeological remains. As such, North Yorkshire County Archaeological Services (NYCAS) requested a programme of desk-based assessment and an archaeological evaluation on the site of the proposed MUGA.

1.1.3 Jacobs Engineering UK Ltd (Jacobs) was commissioned by North Yorkshire County Council to compile a desk-based assessment for the potential impact on archaeological remains at the site (Jacobs 2009a). Based on the results of this, Jacobs prepared a Written Scheme of Investigation (WSI: Jacobs 2009b) for the required archaeological evaluation. Oxford Archaeology North were invited to tender and subsequently commissioned by North Yorkshire County Council to undertake the excavation of the evaluation trial trenching.

1.1.4 Aims: the evaluation aimed to inform the planning process as to the presence or absence, the extent, condition, depth, character, quality and date of any archaeological deposits, in order to assess the impact of the development on the archaeological resource. More specific objectives of the work as set out in the WSI are as follows:

- to identify, investigate and record any archaeological remains at the site;
- to clarify the presence, absence, date, character and extent of any surviving remains within the footprint of the proposed MUGA;
- to determine (so far as possible) the stratigraphic sequence and dating of the deposits or features identified;
- to establish any ecofactual and environmental potential of archaeological deposits and features and;
- to provide recommendations for mitigation measures.

1.1.5 In total, five trial trenches were excavated in the area of the proposed MUGA, measuring 5m in length and 2m wide (Fig 2). The depth of each trench was determined by the proposed impact depth of the proposed development. The trial trenches demonstrated the presence of fluvial deposits associated with the former Damiot stream in Trenches 2, 3 and 5. A machine was used to excavate to a depth of 2.45m in Trench 5, in order to establish the nature of these fluvial deposits.
1.1.6 The excavation of the trial trenches was undertaken by Oxford Archaeology North in October of 2009. The results of the evaluation are reported in this document.

1.2 LOCATION AND GEOLOGY

1.2.1 The solid geology of the Scarborough area is one of sandstone, mudstone and siltstone of the Ravenscar Group, overlain by drift deposits of glacial till. These strata extend across an approximately 3km wide area of ground running along the east coast, between the sea to the east and the low-lying post-glacial sands and gravels of the Vale of Pickering and the grit and greystone of the North York Moors, to the west (Jacobs 2009a).

1.3 HISTORICAL AND ARCHAEOLOGICAL BACKGROUND

1.3.1 Introduction: the background to the site is provided to give an historical and archaeological context to the results of the trial trenches. It has been sourced from the historical research provided by Jacobs (2009a), with some additional information from Pearson (2005). The following text focuses upon the periods of history most relevant to the results of the trial trenches. There were no known finds or deposits dating earlier than the medieval period discovered during the evaluation.

1.3.2 Medieval: the main factors influencing settlement in Scarborough are its natural harbour and the promontory known as Castle Hill, which formed a naturally defensible area. It was formerly the position of a Roman signal station that was constructed around AD 370 (Pearson 2005, 2). A castle was first constructed here by William le Gros, lord of Holderness and Earl of York, during the reign of King Stephen (AD 1135-54), and is the first mention of Scarborough within the historical record. The castle became a royal procession after Henry II’s (AD 1154-89) accession to the throne, and the basic elements of the current castle were constructed during this period (Pearson 2005, 6-9).

1.3.3 Friary: after some political wrangling with the Cistercian order, who feared that the Friary would draw benefactors away from the Parish church of St Mary’s, a Franciscan Friary was established on the site of the present Friarage School in around AD 1270 (Pearson 2005, 46). There were two other Friaries in the town established about the same time; the Dominican Friary was established about 1285 to the south-west of the Franciscan Friary. The Carmelite Friary was founded in about 1319 and was to the north-west of the Franciscan Friary.

1.3.4 Excavations to the rear of Nos 10 and 18 - 22 St Sepulchre Street, to the immediate south of the present school boundary (NGR TA 0456 8881 and TA 2453 8880), have identified demolition debris which probably originated from the destruction of the Friary at the time of the Dissolution of the Monasteries (c AD 1538 – AD 1541). The results of these excavations suggest that these properties lie within the boundary of the former Friary precinct (Hall 1990, 34-9). A large stone wall was identified immediately overlying the demolition deposits, implying that the buildings of the Friary were taken down and re-used for building stone in the latter half of the sixteenth century (Hall 1990, 38).
1.3.5 The course of the former stream, known as the Damyot, has been identified in three previous excavations, and would appear to cross the present school boundary. To the east of the site, excavations at the Springfields/Cook’s Row excavation site (NGR TA 0463 8886) produced thirteenth to fourteenth century buildings and the channel of the Damyot. The Damyot occupied a position within a natural linear hollow in the landscape, falling from the remains of the former Holy Sepulchre Church to the south and Cook’s Row to the north. The Franciscans appear to have culverted the Damyot in the thirteenth or fourteenth centuries in roughly the centre of the former channel. With the dissolution of the friary in 1539, the friary buildings were demolished and the stone culvert appears to have been backfilled (Pearson 2005, 112-9).

1.3.6 The Friars are also known to have constructed conduits running from Falsgrave Park, south-west of the medieval town, to three troughs on Newborough and St Sepulchre Street. These conduits were improved in the seventeenth century and continued in use into the nineteenth century (Scarborough Archaeology and History Society 2003, 38-9). Archaeological excavations have identified remains of the conduits to the south-west and to the east of the school boundary.

1.3.7 Medieval Street Layout: the earliest depiction of the town of Scarborough dates to the 1530s, and presents a view of the town at the end of the medieval period (Pearson 2005, 15) (Fig 3). The draughtsman made little attempt to depict individual streets, and it is debatable whether the tall spire in the centre of the drawing is the Chapel of the Holy Sepulchre or the church of the friary. The friary appears to have been demolished after the Reformation (1539), and the Chapel of the Holy Sepulchre fell into disrepair after 1562, when the lead of the roof was removed to pay for repairs to the pier (Pearson 2005, 43). It is notable that there is no indication of the Damyot depicted running through the town. The church of the Dominican Friary, below and to the left of the church with the tall spire, and the Carmelite Friary, below the same building, appear to be marked on the 1530s map (Fig 3).

1.3.8 Post-Medieval: Cossins’ 1725 plan of Scarborough (Fig 4) shows the principal streets of Longwestgate to the north, St Sepulchre Street to the south and Dumple Street (later replaced by Friargate) to the west. The present Springfield does not appear and instead Cook’s Row extended northwards to join Longwestgate. Buildings are shown fronting onto these roads, with a large courtyard in the centre. To the south-east of the courtyard is depicted St Sepulchre’s church yard which is a rectangular yard, its west side roughly corresponding to the modern alignment of Springfield.

1.3.9 This basic layout is also shown on Vincent’s plan of 1745, where the church yard is shown as a smaller area, and a cul-de-sac is shown coming off Dumple Street running parallel with Longwestgate with buildings to the north and south. Hinderwell’s plan of 1778 shows what appear to be gardens in the former church yard area, and on the western side of the courtyard (Fig 5). Wood’s map of 1828 provides a greater level of detail, but shows that the landscape in the area of the later school had not significantly changed since Hinderwell’s plan (1778).

1.3.10 Ainsworth’s plan of 1842 (Fig 6) shows details of the buildings surrounding the Friarage site. The cul-de-sac is labelled ‘Batty Place’, and a ‘tabernacle chapel’ is located on the south side of the street. The large central courtyard is still in place, but has been encroached upon by the surrounding buildings, including a long
rectangular range in the western portion. Buildings on the north side of St Sepulchre Street are shown with extensions to the rear, further encroaching into the courtyard. In the south-eastern corner of the courtyard a Primitive Methodist Chapel is shown, with a Quaker Meeting House located further to the east.

1.3.11 The 1:500 scale Ordnance Survey map of 1891 (Fig 7) shows that the buildings around the edge of the courtyard had continued to extend into the centre, leading to the creation of yards. In the north, two groups of three houses had been constructed and are labelled ‘Friarage Houses’, one to the rear of Longwestgate, and one immediately south-east of Batty Place. ‘Springfield Place’ had been constructed on its present-day line, while the Methodist chapel appears to have been substantially enlarged from its 1842 configuration. The rectangular range of buildings is labelled ‘Chatwin’s Yard’.

1.3.12 The present Friarage Community Primary School was built in 1896 on the site of the former courtyard. It was constructed in 1896 as a Board School to the designs of John Caleb Petch, a local architect from a prominent family. The school was designed to provide educational facilities for boy and girl infants; the school was divided into two mirrored halves and the boys and girls were taught separately in each.

1.3.13 The buildings on Chatwin’s Yard, the Friarage Houses and the extensions of buildings to the south have now been removed and the area is presently covered with hardstanding. The schoolyard slopes to the south-west and appears to follow the natural landform. The school buildings themselves rest on obviously levelled ground; however, this does not extend beyond the extent of the exterior walls.
2. METHODOLOGY

2.1 TRIAL TRENCHES

2.1.1 In total, five trial trenches were excavated measuring 5m in length and 2m wide (Fig 2). The tarmac was cut using a stihl saw, and then removed by a backhoe loader fitted with a toothed bucket. Excavation of the trenches was initially undertaken using the backhoe loader, fitted with a toothless ditching bucket, under archaeological supervision to the surface of the first significant archaeological deposits or natural glacial till, whichever was encountered first. Further excavation proceeded by hand, with the exception of the machine dug sondage in Trench 5 into fluvial deposits. This was accomplished using a three and a half ton 360° mechanical excavator fitted with a toothless ditching bucket.

2.1.2 The proposed maximum depth of the trial trenches was in accordance with the anticipated depth of impact of the development, and are as follows:

- Trench 1: 1.95m;
- Trench 2: 1.05m;
- Trench 3: 0.60m;
- Trench 4: 1.45m;
- Trench 5: 1.05m

2.1.3 All trenches were excavated in a stratigraphical manner, whether by machine or by hand. The trenches were initially set out by use of a differential GPS. Further survey work was undertaken with a Total Station Theodolite (TST). All the survey data was incorporated into a CAD system, and all the trenches and features were surveyed with respect to the Ordnance Survey national grid (OS). Altitude information was established with respect to the OS Datum.

2.1.4 Selected pits and postholes were half-sectioned, linear features were subject to no more than a 10% sample, and extensive layers, were sampled by partial rather than complete removal. All information identified in the course of the site works was recorded stratigraphically, using a system adapted from that used by Centre for Archaeology Service of English Heritage, with sufficient pictorial record (plans and sections) to identify and illustrate individual features. Field investigations were recorded on pro forma sheets. Plans and sections were drawn at sections at an appropriate scale (1:50, 1:20 and 1:10). A photographic record was compiled comprising digital, 35mm colour slide and 35mm monochrome formats.

2.2 FINDS

2.2.1 The finds recovery and sampling programmes were carried out in accordance with best practice (following current Institute for Archaeologists IfA guidelines). All artefacts recovered from the evaluation trenches were retained.

- **Pottery:** the pottery was subject to analysis and has contributed to the dating of stratified deposits on the site.
• **Glass:** the glass material has been quantified and recorded as part of the project and has contributed to the dating of stratified deposits on the site, but is not particularly suitable for detailed analysis.

• **Animal Bone:** the material has been quantified and recorded as part of the project, but has little potential for further analysis.

2.3 Palaeoenvironmental

2.3.1 Introduction

The environmental sampling programme was carried out in accordance with best practice (following current English Heritage Guidelines, 2002) and the clients sampling strategy (Jacobs 2009b) with samples being taken from all secure contexts. Thirteen bulk samples were taken for the assessment of charred and waterlogged plant remains and two monoliths for the assessment of pollen. Six bulk samples were selected for assessment, two were from medieval fluvial deposits (507 and 517), two were from an early post-medieval pit 430 (417 and 419), one was from context 520, the fill of pit 504, and the sixth from a post-medieval pit or river backfill (515). The two monoliths were taken through fluvial deposit 507 associated with the former Damyot stream.

2.3.2 Charred and waterlogged plant remains

Ten litres of each of the six bulk samples that were chosen for assessment were processed for waterlogged plant remains. The samples were hand-floated, the flots were collected on a 250 micron mesh and air dried. The flots were scanned with a Leica MZ6 stereo microscope and the plant material was recorded and provisionally identified. The data are shown on Table 4. Botanical nomenclature follows Stace (1997). Plant remains were scored on a scale of abundance of 1-4, where 1 is rare (up to 5 items) and 5 is abundant (>100 items). The components of the matrix were also noted.

2.3.3 Pollen

The monolith samples were cleaned and described in the laboratory. A total of six sub-samples were taken for pollen assessment at depths (from the modern ground surface) of 0.36-0.37m, 0.45-0.46m, 0.64-0.65m, 0.72-0.73m, 0.83-0.84m and 0.97-0.98m.

Volumetric samples were taken from the six samples and two tablets, containing a known number of Lycopodium spores, were added so that pollen concentrations could be calculated (Stockmarr 1971). The samples were prepared using a standard chemical procedure (Method B of Berglund and Ralska-Jasiewiczowa 1986), using HCl, NaOH, sieving, HF, and Erdtman’s acetolysis, to remove carbonates, humic acids, particles > 170 microns, silicates, and cellulose, respectively. The samples were then stained with safranin, dehydrated in tertiary butyl alcohol, and the residues mounted in 2000cs silicone oil. Slides were examined at a magnification of 400x (1000x for critical examination) by ten equally-spaced traverses across at least two slides to reduce the possible effects of differential dispersal on the slides (Brooks and Thomas 1967) or 100 total land pollen and spores. Pollen identification was made following the keys of Moore *et al* (1991), Faegri and Iversen (1989), and a small modern reference collection. Andersen (1979) was followed for the identification of cereal grains. Indeterminable pollen was also recorded as an indication of the state of pollen preservation. The preservation of the pollen was noted and an assessment was made of the potential for further analysis. Charcoal particles greater than 5
microns were recorded also (Peglar 1993). The data are shown in Table 4 as actual pollen counts with charcoal recorded as present or absent.

2.4 ARCHIVE

2.4.1 A full professional archive has been compiled in accordance with current IfA and English Heritage guidelines (English Heritage 1991). The paper and digital archive will be provided in the English Heritage Centre for Archaeology format and will be submitted to the Yorkshire Museum on completion of the project. Copies of the report will also be submitted to the Historic Environment Record. The Arts and Humanities Data Service (AHDS) online database Online Access index of Archaeological Investigations (OASIS) will be completed as part of the archiving phase of the project.
3. TRIAL TRENCH RESULTS

3.1 INTRODUCTION

3.1.1 In total, five trenches were excavated, all of which measured 5m in length and 2m wide. They were positioned across the area of the proposed MUGA (Fig 2), for the most part, in accordance with the project specification, although Trench 5 was located 5m to the south of the suggested position so as to avoid a service line. All archaeological features, deposits or structures were excavated and recorded as defined within the project specification (Appendix I). A full list of excavated contexts is listed in Appendix 2. The finds are discussed in Section 3.4 and listed in Appendix 3.

3.2 TRENCH 1

3.2.1 Trench 1 was excavated on a north-north-east/south-south-west orientation to a maximum depth of 1.29m (Figs 2 and 8; Plate 1). The tarmac, 101, and a number of post-medieval deposits were removed to reveal glacial till, 112, at a depth of 1.42m from the surface. The glacial till was tested by the excavation of a sondage into the clay at the south-western end of the trench.

3.2.2 A number of post-medieval deposits and one wall were recorded in the south-east facing section of the trench (Fig 9). Above glacial till 112, layer 110 was an interface between the clay till and a buried soil horizon, 115, containing early post-medieval pottery. Deposits 113, 114, 116, 108 and 109 comprise either the disturbance of this soil, or levelling deposits. Deposits 111, overlying soil 115, is an imported soil that has also used been used to level the area. Wall 105 was built on an east/west orientation, the construction cut of which, 117, truncated deposits 108, 110, 111 and 115 (Fig 9). This wall was part of a row of terraced housing that was visible on a town map of 1828 (Wood 1828), and also depicted on the Ordnance Survey map of 1891 (Fig 7). It was built across the area of the playground on a east-north-east/west-south-west alignment. To the south of this wall, was levelling layer comprising a light, orangey sand silt, and above that was an internal brick surface, 106. To the north of the wall a disturbed cobbled surface was present, 107. To the north/east of the wall is an imported top soil, 104, and to the north-east of the wall is a dark grey, coarse sand silt levelling layer, 103. Layer 102, overlying these surfaces and the wall, is a levelling deposit comprising demolition debris from this former building, above which the tarmac of the current play ground has been lain.

3.3 TRENCH 2

3.3.1 Trench 2 was excavated on a north-north-west/south-south-east orientation to a maximum depth of 1.45m (Fig 10; Plate 2). Tarmac, 202, was removed to reveal post-medieval brick floor and levelling deposits. These overlay sediment used to backfill a former stream, the Damyot. The channel of the stream was investigated by the excavation of a sondage in the southernmost half of the trench (Fig 11).
3.3.2 Glacial till, 208, was located at a depth of 0.88m at the southern edge of the trench. This deposit was tested by hand excavation, for comparison to deposit 517 in Trench 5 (Section 3.6). Deposit 208 had been truncated by what is thought to be the cut of a former course of the Damyot, 201, on an east-south-east/west-north-west orientation. This channel was not fully excavated in the trial trench, and the northern extent of the channel was not located within the trench. Two deposits were recorded within the channel, 206 and 207 (Figs 11 and 12; Plate 3), of which the lower of these, 207, was waterlogged. They both contained early post-medieval pottery. It is uncertain whether this material may have been sourced nearby, or imported onto the site from elsewhere to backfill the channel.

3.3.3 Overlying the channel and the glacial till, across the extent of the trench, was a levelling deposit, 205, and an imported soil, 204. Deposit 205 contained late seventeenth to nineteenth century ceramics. A brick floor, 203, overlay soil 204, and it is over this that the tarmac of the current playground, 202, has been lain (Fig 12; Plate 4).

3.4 TRENCH 3

3.4.1 Trench 3 was excavated on a east-north-east/west-south-west orientation to a maximum depth of 0.9m (Fig 13; Plate 5). The tarmac was removed to reveal post-medieval levelling deposits, below which waterlogged post-medieval deposits, similar to those in Trench 2, were located. These were investigated by the excavation of a sondage in the easternmost half of the trench.

3.4.2 Glacial till was not reached in the excavation of this trial trench. The earliest recorded deposits were 306 and 307, which contained late seventeenth to late eighteenth century pottery (Fig 14; Plate 6). They were both very similar to deposits 206 and 207 from Trench 2, the lower deposit, 307, being very waterlogged. As in Trench 2, these sediments are likely to have been sourced from nearby. Above 306 was a layer of clay, 305, which was redeposited from the glacial till and had been used to cap the waterlogged deposits.

3.4.3 Overlying these deposits, across the extent of the trench, were imported soils 303 and 304, above which a brick surface, 302, had been lain (Fig 15; Plate 7). Sealing all of these layers was the tarmac of the current playground, 301.

3.5 TRENCH 4

3.5.1 Trench 4 was excavated on a east-north-east/west-south-west orientation to a maximum depth of 1.57m (Fig 16). Running across the centre of the trench, on a north-east/south-west orientation, was a ceramic pipe of the currently extant drains. This was left undisturbed, with both ends of the trench excavated to a greater depth (Fig 17). A thin layer of preserved soil, 420/428, was located at the base of the trench above the glacial till, which was potentially medieval in date, and a number of post-medieval layers and features were recorded in the trench section.

3.5.2 Glacial till, 433, was only located in a 0.36m by 0.22m area at the western end of the trench, found when sampling deposit 420 (Figs 16 to 18). Deposit 420, a preserved sub-soil, is thought to be the same as layer 428 at the eastern end of the trench and contained abraded medieval ceramics. Cutting layer 420, in the north-
western corner of the trench, was an east-north-east/west-south-west orientated cut, 430 (Fig 17; Plate 8 and 9). Very little of this feature was present within the trench itself, as it continued beyond the western and northern limits of excavation and beneath the baulk left in the middle of the trench, but it had irregular sides. It was filled with sediments 414 to 419, comprising deposits of clay, charred material and soils (Fig 18). Deposit 419, the earliest fill of 430, contained sixteenth to seventeenth century pottery.

3.5.3 At the western end of the trench an imported post-medieval soil, 412, and levelling deposit, 408, overlay feature 430. These are thought to be contemporary with levelling deposits 427 to 423 at the eastern end of the trench (Fig 16 and 17; Plate 10). Deposit 412 contained one fragment of very abraded medieval floor tile.

3.5.4 At the eastern end of the trench, a pit, 432, truncated deposit 423 (Fig 17; Plate 10). It contained a single fill, 422, comprising a mixture of topsoil and lime mortar and other sediments.

3.5.5 The wall and foundation within construction cut 434 (Fig 17 and 18; Plate 8 and 9) cut through deposit 408, and comprised three elements. Foundation 411 is thought to be reused sandstone from the former friary buildings. The foundation of the construction consisted of roughly-hewn and unevenly-coursed sandstone, bonded together with a cement mortar. Above 411 was a layer of bricks, 410, laid as headers, and cement used to provide a level surface upon which the brick wall 409 was built. Deposit 435 is effectively the redeposited 408 soil, between the construction cut and the masonry foundation. This structure is part of a terrace that was visible on Wood’s map of 1828, but was also depicted on the 1891 OS map (Fig 7), which was built across the area of the later playground on an east-north-east/west-south-west alignment.

3.5.6 Across the full extent of the trench was an imported soil, 407 (Fig 17 and 18; Plate 8 and 10). This layer was most likely laid down during the same period of construction, and butts up against the lower part of wall 409. Cutting soil 407 was pit 429, in the south-western corner of the trench (Fig 18; Plate 10), which had been backfilled with a deposit of lime mortar, 406, and a mix of soil and other sediment, 405. Pits 432 and 429 and most likely associated with post-medieval construction at the site.

3.5.7 The trench for the ceramic pipe of the current drainage system, 431, cut deposits 422 and 423 to the east of the pipe. It was not visible at a higher level but it is more likely that it cut deposit 407 (Fig 17; Plate 10). Alternatively, the land was levelled up with layer 407 after the pipe had been inserted. Deposits 404 and 403 were thin levelling layers across most of the trench, above which a disturbed brick floor 402 had been lain down. Overlying this floor was a layer of fragmented brick 402, originating from the demolition of the former terrace row, over which the tarmac, 400, of the current playground was lain.

3.6 TRENCH 5

3.6.1 Trench 5 was excavated on a east-north-east/west-south-west orientation to a maximum depth of 2.47m (Fig 19: Plate 11). The trench appears to have been located within the channel of the Damyot. The earliest fluvial deposits are medieval in date, although post-medieval deposits are also present. The stream
deposits were investigated by excavating a sondage through them by machine at the westernmost end of the trench. A post-medieval footing was located across the middle of the trench.

3.6.2 Glacial till was not located in the trial trench. The earliest deposits, 517 and 507, were associated with the Damyot stream, and were either fluvial or material derived from the surrounding area (Section 3.8.4); they were located in the machine-excavated sondage at the western end of the trench (Fig 20; Plate 12). Assessment results of the environmental samples from 517 appears to support this, although most of the biological contents of the samples may have derived from the adjacent dry ground. Deposit 507 contained a percentage of redeposited clay till within its matrix, and was potentially deposited as colluvium from the adjacent higher land or eroded from further upstream. The lower deposit, 517, contained fragments of structural wood and thirteenth/fourteenth century pottery. Deposit 506 at the eastern end of the trench is thought to be the same sediment as deposit 507 at the western end. This is recorded as being truncated by a suggested edge of the post-medieval phase of the stream, 516. Although deposit 507 contained medieval pottery, deposit 505, which was below 506, contained a fragment of glass no earlier than the late seventeenth century. The difference between 505 and 506 is largely one of colour, due to a higher silt content in 505, in what are, to all intents and purposes, very similar clay layers that were deposited in the same environment. Deposit 505 does not equate to deposit 517, which is located at a greater depth and is of a very different composition. Excavation conditions were far from ideal in this waterlogged environment, and it is quite probable that the late seventeenth glass fragment in 505 is intrusive.

3.6.3 Two possible pits cut these earlier deposits. Pit 510 at the western end of the trench (Fig 20; Plate 13) had straight sides, a flat base and was 0.32m deep. It was backfilled with deposit 515 which contained charred material. Features 508 and 504 in the centre of the trench, located either side of the later wall footing 513, are possibly the same large pit or channel, measuring 2.95m wide (Fig 19). The fills of this second feature, 502 and 512 within 504 and 509 within 508 (Fig 21; Plate 14 and 15), are very similar to the fill of pit 510. Deposit 502 contained sixteenth century pottery. It is also feasible that feature 504/508 is a subsidiary channel entering the Damyot from the south, cutting 510, which could be an undulation in the earlier deposits rather than a being a pit. The fact that deposit 515 appears to extend beyond the boundaries of pit 510 may support this second interpretation.

3.6.4 Deposit 511 lay over the upper levels of the suggested post-medieval large pit/river channel, on the northern side of cut, 516 (Fig 21). It notably had some soil structure to it, and has potentially sunk into the underlying channel from above as the underlying layers were compacted. Cut into this layer was construction trench 519, within which sandstone footing 513 had been built on a north/south orientation across the centre of the trench. There is the possibility that 504/508 represents a north/south side channel that enters the main east/west channel.

3.6.5 Redeposited post-medieval soil, 514, overlay footing 513, in the north of the trench, and it was sealed by the construction of a brick floor, 518. The levelling layer, 503, and tarmac, 501, of the current playground directly overlay this earlier brick surface (Fig 21).
3.7 FINDS

3.7.1 In all, 488 finds were recovered from the trenches excavated. Their provenance is shown in Table 1 below:

<table>
<thead>
<tr>
<th>Context</th>
<th>Bone</th>
<th>CBM</th>
<th>Pottery</th>
<th>Tobacco pipe</th>
<th>Vessel glass</th>
<th>Window glass</th>
<th>Stone</th>
<th>Wood</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>106</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>115</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>204</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>205</td>
<td>6</td>
<td>1</td>
<td>47</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>206</td>
<td>2</td>
<td>12</td>
<td>20</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>207</td>
<td>18</td>
<td>25</td>
<td>76</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>300</td>
<td>3</td>
<td>21</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>305</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>306</td>
<td>3</td>
<td>11</td>
<td>38</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>307</td>
<td>3</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>412</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>416</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>417</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>419</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>420</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>428</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>11</td>
<td>3</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>503</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>505</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>507</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>509</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>517</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Unstrat.</td>
<td>4</td>
<td>58</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>Totals</td>
<td>69</td>
<td>78</td>
<td>345</td>
<td>9</td>
<td>37</td>
<td>5</td>
<td>8</td>
<td>66</td>
<td>617</td>
</tr>
</tbody>
</table>

Table 1: Context of finds by material type

3.7.2 The Pottery: in general the pottery was in good condition, surviving (especially in Trench 5) in large fragments, and for the most part unabraded, although some of the later medieval material from Trench 4 was sufficiently abraded to suggest secondary deposition.

3.7.3 A range of late medieval/transitional and early post-medieval fabrics were recognised, with very little stratified material demonstrably more recent than the late eighteenth/early nineteenth century. They are discussed below in approximately chronological order, and only the stratified material is discussed in detail.

3.7.4 A small fragment of a hard, fine dark grey unglazed fabric from Trench 5 (517) was not further identified, but its stratigraphic position suggests that it might be relatively early compared with most of the pottery from the site. It was, however, found in association with an abraded fragment of a sandy orangeware which could date to the late thirteenth or fourteenth century. Only one context from Trench 1 produced pottery (110, five sherds), which includes a sherd of Scarborough Ware (Phase II (c AD 1225-1366)) (Farmer and Farmer 1982) but is otherwise mixed,
with early post-medieval redwares also present. The few sherds from Trench 4 (contexts 412, 419, 420) are also mixed, and noticeably more abraded than other material recovered, suggesting an element of disturbance, if not redeposition. The presence of green-glazed floor tile in 412 (and also in 417, which did not produce pottery) might suggest some dumping. Early post-medieval redware from 419 can probably be placed in the sixteenth or seventeenth century, with the remainder dating generally from the fourteenth to sixteenth centuries.

3.7.5 Pottery from Trench 5 seems to be of a generally earlier character than that from Trenches 2 and 3. An abraded jug handle in Scarborough Ware 2 (dated to the thirteenth/fourteenth century) came from context 507 and a second sherd was from context 505; it is possible that both could be residual, appearing alongside fully-reduced green wares, and probable Low Country redwares. It must be noted that the glass from 505 can be no earlier than the last quarter of the seventeenth century. A distinctive base with a ring foot, in a thin white fabric with a rich copper glaze, from 509 is probably of sixteenth century date. An unidentified very hard-fired grey-pink fabric from the same context has a colourless-yellowish glaze, a jar with thumbed strip below the rim seems likely to be of a similar date.

3.7.6 Most of the pottery from Trench 5 was from context 502, where large parts of up to four vessels were noted, one an almost complete lid. A large dripping pan with a horizontal handle is probably a heavily gritted Humberware type (eg Watkins 1987, fig 65.164), appearing in Hull in later fourteenth-century contexts, although it must be noted that Humberware continued in production into the seventeenth century. In general terms, lids are a later development, spanning the transition to early post-medieval vessel forms. This one, in a coarse salmon-pink fabric with white crystalline inclusions, is similar to forms from Norwich, dating to the sixteenth and early seventeenth centuries (Jennings 1981, fig 29.518-20). The base of an almost cylindrical jug in an unidentified sandy reduced fabric remains undated, but a shallow dish in a soft sandy orange fabric with a dark green glaze, is again most likely to be of fifteenth to sixteenth-century date.

3.7.7 Early post-medieval redwares form a substantial element of the assemblage from Trenches 2 and 3, and are probably a mix of locally-produced and imported fabrics. A range or red ware cooking vessels was imported from the Netherlands since the medieval period (Cotter 2000, 266), being particularly common from the fifteenth to the seventeenth century. A tripod cauldron from Trench 2 context 207, where it is associated with other seventeenth and eighteenth-century vessels, is lacking the rim or handles which might allow close dating, but seems closer to seventeenth-century forms than others. Most of the redwares, usually with a colourless or greenish-brown lead glaze, are probably English in origin, but no attempt has been made to identify them to a producer. They include a range of pipkins, shallow dishes and bowls, and large storage vessels with horizontal lug handles and thumbed strips below the rim, which were forms that were popular in the seventeenth to eighteenth centuries.

3.7.8 Staffordshire slipwares and other slip-decorated pottery are characteristic of the later seventeenth and eighteenth centuries. Press-moulded slip-decorated plates were noted in Trenches 2 and 3 (contexts 205-7, 300) and hollow wares in Trench 3 (context 307). Two fragments of a red-bodied thrown plate with white and green decoration are probably Low Countries imports of a similar or slightly earlier date.
3.7.9 Several contexts (Trench 2 205-7; Trench 3 300, 306-7) produced fragments of tin-glazed vessels; most were plain, although there were also fragments of blue and white flatwares and a single polychrome vessel. The full profile of a plain dish was recovered from context 306. Tin-glazed wares were popular from the late seventeenth to the third quarter of the eighteenth century, when they were rapidly superseded by more durable fabrics, such as white salt-glazed stonewares.

3.7.10 A single small fragment of Raeren stoneware was found unstratified. This fabric was imported into Britain in considerable quantities in the sixteenth century (Hurst et al 1986, 194). Westerwald stoneware was also present, fragments of a straight-sided tankard coming from Trench 2 context 207. Such tankards were produced from the mid-eighteenth century (op cit, 222).

3.7.11 Brown salt-glazed stonewares were imported from the Cologne/Frechen producers in great quantities in the sixteenth-seventeenth centuries, although by the end of the seventeenth century English production was growing rapidly. Undiagnostic fragments were recovered from Trenches 2 and 3 (205, 300). White salt-glaze stonewares, produced in Staffordshire during the first three-quarters of the eighteenth century (Jennings 1981, 222), were recovered from Trench 2 (205, 207) and Trench 3 (300, 306, 307).

3.7.12 The same contexts also produced at least five vessels in Chinese porcelain. No attempt has been made to date these vessels, but it is assumed that they reached Scarborough in the eighteenth century, following the vogue for such imports.

3.7.13 Small amounts of late eighteenth and nineteenth-century fabrics, for instance creamware, and pearlware, and under-glaze transfer-printed white earthenwares, were recovered from Trench 2 context 205, and Trench 3 300 and 306, suggesting that deposition continued until perhaps the mid-nineteenth century.

3.7.14 The Glass and other finds: there was surprisingly little vessel glass, the majority deriving from dark olive green wine/beer bottles, with perhaps no more than three vessels represented. All three would could be placed in the late seventeenth to early eighteenth century. There were, in addition, fragments of two vessels in greenish ‘Forest Glass’, one the plain rim of a beaker, the other the pinched base of a small vessel, possibly also a beaker; both were found unstratified. Although neither is particularly diagnostic in form, a seventeenth-century date would not seem out of place. In addition, there were five fragments of thin, greenish window glass from Trench 2, contexts 205, 206, and 207. That from 205 retains cut edges, indicating a small rectangular quarry. Greenish ‘Forest Glass’ of this kind can be dated to the early post-medieval period, and would fit well with the dating of pottery from the same contexts.

3.7.15 Ceramic and other building materials were present in all five trenches, although more fragments were recovered from Trenches 2 and 3 than from elsewhere on the site. Complete hand-made bricks came from Trench 1 contexts 105 and 106, and part-bricks from Trench 2 contexts 206 and 207, but most of the identifiable fragments were from slightly concave sand-cast roof tiles, with a curving lower edge and hung by means of a well-formed nib, placed centrally on the upper edge. Although medieval roof tiles are well known on the east coast, for instance in Hull (Armstrong and Armstrong 1987), it seems most likely that these examples are post-medieval in date. Similarly-sized trapezoidal limestone roof tiles were recovered from Trenches 2, 3, and 5. These were intended to be suspended by a
single nail, placed centrally at the top of the tile, and again they could be of medieval or post-medieval date. Two fragments of carefully-made green-glazed floor tiles were recovered from Trench 4 (contexts 412 and 417). As these are plain, little can be done to date them. A fragmentary timber was recovered from Trench 5 context 517. Preserved by waterlogging, it was clearly from a timber structure, retaining fragments of a wooden peg, and with axe or adze marks on the surviving surfaces. It was, however, too small for further identification.

3.7.16 Little can be gained from the small group of clay tobacco pipes. All of those from stratified contexts were small and undiagnostic stem fragments, except for a dateable bowl (from Trench 2 context 206), which is a Masonic type dating to the later nineteenth century. A second bowl, found unstratified, can be dated to 1680-1710.

3.7.17 Animal bone: in total, 69 animal bone fragments, weighing 1.7kg, were recovered from stratified deposits (Table 2). The material was identified using the reference collection held at OA North. All parts of the skeleton were identified where possible, including long bone shafts, skull fragments, all teeth and fairly complete vertebrae. Sheep/goat distinctions were made using reference material and published work by Boessneck (1969) and Payne (1985). Bird bones were identified with reference to Cohen and Serjeantson (1996). For each bone the following information was recorded where appropriate: Object number; species or species group; element; number of bones; side; the diagnostic zone as either more than or less than half present; fusion state; preservation; butchery; measurements; tooth wear development; and other comments. Pathology and other developmental or congenital anomalies were also noted. The diagnostic zones used followed those described in Serjeantson (1996). Measurements followed those set out in von den Driesch (1976). Sheep tooth wear development for mandibular teeth were recorded following Payne (1973) and (1987).

3.7.18 The majority of the material is derived from post-medieval deposits, although a small number of bones were recovered from the possible medieval river deposits in Trench 5. Generally, the bone of each period is in a good state of preservation, often fragmented, but robust and with little erosion to the surface of the bone (Table 3).

<table>
<thead>
<tr>
<th>Species</th>
<th>Medieval</th>
<th>Post-medieval</th>
<th>Undated (Pre-nineteenth century)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>1</td>
<td>11</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Pig</td>
<td>4</td>
<td>2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Sheep</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cattle/Red Deer</td>
<td></td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Sheep/Goat/Roe Deer</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Medium Mammal</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Large Mammal</td>
<td>10</td>
<td>6</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Unidentified Mammal</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Gallioforme</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bird</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>49</td>
<td>13</td>
<td>69</td>
</tr>
</tbody>
</table>

Table 2: Number of Individual Specimens (NISP) by species and phase
3.7.19 The total sample size is too small for meaningful interpretation, especially as much of the bone from post-medieval deposits may have been imported onto the site within levelling deposits. A small number of butcher marks present on the bone attest to the dismemberment and filleting of the principal domestic animals. A post-medieval cow first phalanx also had a knife mark from the skinning of the animal. In addition, a post-medieval cow second phalanx had an extended proximal articular surface, possibly the result of its use as a traction animal.

3.7.20 No further work is required on the animal bone. The stratified animal bone should be retained as part of the site archive, although the unstratified portion bone could be discarded.

3.8 Palaeoenvironmental Samples

3.8.1 Plant remains: there were charred plant remains recorded in the six samples chosen for assessment, together with waterlogged ones in contexts 507 and 517. The latter were described on site as fluvial deposits of the Damyot, although they may have washed in from the surrounding area. Charred barley (*Hordeum*), bread wheat (*Triticum aestivum*), oats (*Avena*) and indeterminate cereal grains were recorded in all samples except sample 4 (417), a fill of 430. There were also occasional records of crop processing waste, including culm nodes and a barley glume.

3.8.2 Pit 430: there was a very distinctive assemblage of plant remains in pit 430 (417 and 419). It was dominated by charred heather (*Calluna vulgaris*) charcoal, shoots and flowers. Both fills had a variety of weed seeds in them including goosefoots/oraches (*Atriplex/Chenopodium*), grasses (*Poaceae*), small legumes (*Fabaceae*), common chickweed (*Stellaria media*) and bedstraws (*Galium*). The basal fill 419 also contained charred barley grains and some crop processing waste and there was charred bracken (*Pteridium aquilinum*) in 417.

3.8.3 The second pit 504 (sample 8, fill 502) had no heather in it but barley, oats and indeterminate cereal grains, a few weed seeds, and charred monocotyledonous stems, from plants such as grasses, rushes (*Juncus*) and sedges (*Cyperaceae*) were recorded. There were also some fragments of mammal and calcined bone.

3.8.4 The three remaining samples were derived from the possible medieval fluvial deposits associated with the Damyot. The plant remains from the two lower deposits 507 and 517 were assessed as dissimilar. Although both contained evidence for waterlogged preservation these were only of significance in 517. In this deposit large numbers of waterlogged seeds, hazel nutshell (*Corylus avellana*) fragments, wood fragments, insect remains, fly *puparia*, mammal bone and marine fish bone (herring and unidentified *Gadiforme*) were identified. Weeds of cultivated and waste ground dominated and included common and

Table 3: Condition of the bone by preservation category presented as normalised values, excluding loose teeth

<table>
<thead>
<tr>
<th></th>
<th>nineteenth century</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robustisity</td>
<td>0.8 0.8 0.8 47</td>
</tr>
<tr>
<td>Surface erosion</td>
<td>0.8 0.8 0.7 47</td>
</tr>
<tr>
<td>Percentage of original bone present</td>
<td>0.5 0.4 0.3 47</td>
</tr>
</tbody>
</table>
small nettle (*Urtica dioica* and *U. urens*), common sorrel (*Rumex acetosa*), mustard, rape and cabbages (*Brassica*) and corn spurrey (*Spergula arvensis*). Some of the wood fragments were encrusted with vivianite. The deposit above this, **507**, had fewer plant remains either waterlogged or charred, no insect remains and fewer fragments of mammal or fish bone. The only waterlogged seeds, which were very fragmentary, were elderberry (*Sambucus nigra*), henbane (*Hyoscyamus nigra*), and a few rush.

3.8.5 The fill **515** (Sample 8) of pit **510** has been dated to the post-medieval period and it contained bread wheat, barley, cultivated legumes and culm nodes, with large numbers of a very distinctive charred seed (possibly a member of the daisy/dandelion family (*Asteraceae*)) and bracken.

3.8.6 All the bulk samples had coal, heat-affected vesicular material and charcoal in them. Oak (*Quercus*) and diffuse porous taxa like alder (*Alnus glutinosa*), hazel and birch (*Betula*) were noted.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Context number</th>
<th>Flot volume (ml)</th>
<th>Flot description</th>
<th>Plant Remains</th>
<th>Potential for analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>417</td>
<td>750</td>
<td>Charcoal (>2mm 5, <2mm 5) including Quercus, diffuse porous, Calluna, and roundwood charcoal</td>
<td>CPR, Weed seeds 3, including Chrysanthemum segetum, Poaceae, Persicaria lapathifolia, Other charred remains 5 Calluna vulgaris shoots, leaves and flowers</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>419</td>
<td>800</td>
<td>Charcoal (>2mm 5, <2mm 5) including Quercus, diffuse porous, Calluna, and roundwood charcoal, coal 5, HAVM 5</td>
<td>CPR Cereals 3 including Hordeum and undifferentiated grains, chaff 1, Weed seeds 5 including Chenopodium, Poaceae, <4mm Fabaceae, Persicaria sp, Stellaria media, Other charred remains 5 Calluna vulgaris shoots, leaves and flowers</td>
<td>High</td>
</tr>
<tr>
<td>8</td>
<td>502</td>
<td>1200</td>
<td>Charcoal (>2mm 5, <2mm 5) including Quercus, diffuse porous, and roundwood charcoal, charred stems of monocotyledons, mammal bone 2, fish bone 2, coal 5, HAVM 5</td>
<td>CPR Cereals 3 including Hordeum, Avena, and undifferentiated grains, Weed seeds 2, including Chrysanthemum segetum</td>
<td>Moderate</td>
</tr>
<tr>
<td>10</td>
<td>507</td>
<td>110</td>
<td>Charcoal (>2mm 5, <2mm 5) including</td>
<td>CPR Cereals 1 including Avena, and</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Quercus, diffuse porous, little Calluna, and roundwood charcoal, charred stems of monocotyledon, mammal bone 2, calcined bone 2, coal 5, HAVM 5

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>515</td>
<td>900</td>
</tr>
<tr>
<td>Charcoal (>2mm 5, <2mm 5) including Quercus, diffuse porous, Rosaceae thorns, charred herbaceous stems, coal 5, HAVM 5</td>
<td>CPR</td>
<td>High</td>
</tr>
<tr>
<td>Weed seeds 2, including Bromus, Chenopodium. WPR 2 including Sambucus nigra, Hyoscyamus niger and Juncus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>517</td>
<td>600</td>
</tr>
<tr>
<td>Charcoal 3, wood 5, insect remains 5, fly puparia 2, fish bones 3, mammal bone, vivianite, coal, HAVM</td>
<td>CPR</td>
<td>High</td>
</tr>
<tr>
<td>Cereals 2 including undifferentiated grains cf Triticum WPR Weed seeds 5, including Urtica dioica, U urens, Rumex acetosa, Lamium sp, Brassica sp, Fumaria sp, Cirsium sp and Stellaria media. Corylus avellana nutshell fragments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Assessment of charred and waterlogged plant remains from Friarage School, Scarborough. Plants recorded on a scale of 1-5, where 1 is rare (up to 5 items) and 5 is abundant (>100 items). WPR = waterlogged plant remains, CPR = charred plant remains, HAVM = Heat Affected Vesicular Material.

3.8.7 **Pollen**: the maximum combined total of pollen grains and fern spores recorded in the six sub-samples from the possible medieval fluvial deposit, 507, was seven at a depth of 0.97-0.98m and the minimum was zero at a depth of 0.36-0.37m. Charcoal or coal particles were abundant in the six sub-samples but it is difficult to distinguish between microscopic charcoal and coal. Occasional pre-Quaternary spores were recorded in several of the samples. The pollen assessment demonstrated that no pollen had been preserved in this context.
4. CONCLUSIONS

4.1 DISCUSSION

4.1.1 Summary: the excavation trenches located remains of a former stream, the Damyot, in Trenches 2, 3 and 5. Remains of nineteenth-century terraced buildings depicted on the 1891 Ordnance Survey map of the area were located in Trenches 1 and 5. External brick yards were found in Trenches 2, 3 and 5, with demolition debris from this nineteenth-century phase of construction found in each trench.

4.1.2 Damyot: deposits potentially relating to the Damyot potentially fall into two different phases, possible medieval fluvial sediments, and the early post-medieval deposits that were used to backfill the stream and level the area. Although the sediment of both phases hold water, it is the later phase which contained retained copious amounts of water leading to rapid flooding of the trenches. By contrast Trenches 1 and 4, in which no sediments of the stream were located, were both dry.

4.1.3 The level of the natural glacial till, located in Trenches 1, 2 and 4, demonstrate that the original landform probably fell to the north-east, and this was also noted at the Springfields/Cook’s Row excavations to the east of the school (Pearson 2005, 112-9). The glacial till in Trench 1 is 2.17m lower than that in Trench 2 and 1.44m higher than that in Trench 4; correspondingly, the till in Trench 4 is 3.61m lower then that in Trench 2. The glacial till was not located in Trench 5, but deposit 517 was excavated to a depth 0.40m below that of the till in Trench 4. The relatively high level of clay till 208 in Trench 2, in comparison to Trenches 1 and 4, may suggest that 208 was a redeposited clay, although there was no indications of this within the exposed and excavated portion of this deposit. Although the depth of the till does not give us the height of the medieval land surface, it is clear that both human and natural agents, in the form of the Damyot, have greatly affected the form of the landscape at the site throughout its history. The present landform at the site was most likely created in the late seventeenth century or early eighteenth century.

4.1.4 The exact course of the Damyot, and a reconstruction of the medieval landform, could only be established by further work. Figure 22 presents the projected line of the stream, as depicted on the first edition Ordnance Survey map of 1852, along with its position as identified by the Springfields/Cook’s Row excavations (Pearson 2005, 115) and its possible course based on the results of evaluation Trenches 2, 3 and 5.

4.1.5 There have been several small archaeological interventions in the medieval centre of Scarborough (Hall and Huntley 2007, 163), examples of reports are Hall and Kenward 1990, Hall et al 1996a, b, Hall et al 1997 and Hall et al 2000 and from one post-medieval context at the Snowdrift Cleaners (Huntley 1994), but there was no extensive environmental sampling.

4.1.6 Early post-medieval pit 430 (samples 4, 417 and sample 5, 419) has an interesting assemblage of charred plant remains with very large numbers of charred heather remains and cereal grains. This assemblage may have originated from, for example, burnt thatching, fuel, fodder or animal bedding. A similar assemblage of plant remains was identified by Hall and Kenward (1990) from a medieval deposit at The Bolts, Scarborough, which they interpreted as stable waste with some domestic
material (Hall and Huntley 2007, 222). There is a high potential for the analysis of these plant remains from pit 430 and the results could be very informative.

4.1.7 Soil samples taken from the sediments of the Damyot have considerable palaeoenvironmental potential. The assessment of the plant remains from the two lower deposits 517 and 507 suggest that there is little evidence that the material originated from a fluvial environment. However, the excellent preservation of the waterlogged plant remains and the presence of vivianite (a hydrated iron phosphate which can be an indication of rapid accumulation and the presence of cess material) suggest that the environment was waterlogged and conditions were anaerobic when the remains were deposited in the feature. This would suggest that the material within the former water channel was deposited from adjacent lands.

4.1.8 There is a very good assemblage of waterlogged plant and other remains in deposit 517 with fewer in deposit 507 and there is a high potential for the analysis of fish bone, plant (waterlogged and charred) and insect remains. This will inform about the economy and environment of the site. The abundance of weed seeds in the lower deposit (517) suggest that debris from areas of cultivated/open ground were deposited in the watercourse. There is evidence of cereal use in both samples. The assessment of the plant remains in deposits 517 and 507 suggest that there was no natural accumulation of sediments in the watercourse, and that this may have derived from surrounding areas.

4.1.9 Uncertainty about the derivation of the deposits from the Damyot has been expressed by Hall et al (1997) in their report of the analysis of probable deposits from the Damyot watercourse at St Sepulchre St (Hall et al 1997). They recorded that the ‘possible natural silting’ did contain a few food remains (Hall and Huntley 2007, 163) and suggested that if it was natural silting it accumulated close to areas of settlement. Neither sample from the 1997 work appears to have been as rich in plant remains as the two from this evaluation.

4.1.10 The environmental bulk samples from the two post-medieval features, pit fill 502 and a pit fill 515, demonstrated that charred plant remains have been preserved, including cereal grains, cultivated legumes, crop processing waste and a large numbers of an unknown weed taxon in 515.

4.1.11 The pollen assessment of fluvial deposit 507 demonstrated that no pollen had been preserved in this context. The presence of pre-Quaternary spores in several of the pollen samples may suggest that clay has been re-deposited from older sediments.

4.1.12 The assessment of plant remains from the evaluation at Friarage School, Scarborough, has demonstrated that there is a high potential for the analysis of plant remains in the possible medieval deposits, 507 and 517, and the post-medieval deposit, 502, and of fish bones and invertebrate remains in deposit 517. Hall and Huntley (2007, 255) recommend that sites in smaller medieval towns, or any sites of post-medieval date, need further archaeobotanical investigation.
5. BIBLIOGRAPHY

5.1 PRIMARY SOURCES
Ainsworth’s plan of 1842
Cossin’s Map of 1725
Hinderwell’s plan of 1778
Ordnance Survey 1:500 scale Yorkshire Mapsheet LXXVIII.13.2, Surveyed 1891, published 1892
Wood’s map of 1828

5.2 SECONDARY SOURCES
Boessneck, J, 1969 Osteological Differences between Sheep (Ovis aries Linne) and Goat (Capra hircus Linne), in D Brothwell and E Higgs (eds), Science and Archaeology, 2, London, 131-58
Brooks, D, and Thomas, KW, 1967 The distribution of pollen grains on microscope slides. The non randomness of the distribution, Pollen Spores, 9, 6-629.
Cohen, A, and Serjeantson, D, 1996 A manual for the identification of bird bones from archaeological sites, London
Cotter, JP, 2000 Post-Roman pottery from Colchester, 1971-85, Colchester Archaeol Rep, 7, Colchester
English Heritage 2002 Environmental Archaeology: A guide to the theory and practice of methods, from sampling and recovery to post-excavation, Swindon
Farmer PG and Farmer NC The Dating of the Scarborough Ware Pottery Industry, in Medieval Ceramics, 6, 66-86
Hall, A, Issitt, M, and Large, F 1996a Evaluation of biological remains from excavations at The Former Convent School, Queen Street, Scarborough (site code: STS96), unpubl rep Environmental Archaeology Unit, York 96/54

Hall, A, Issitt, M, Jaques, D, and Large, F., 1996b Evaluation of biological remains from 22A Quay Street, Scarborough (site code QS96), unpubl rep Environmental Archaeology Unit, York, 96/35

Hall, A, Issitt, M, Kenward, H, and Large, F, 1997 Assessment of biological remains from excavations at St Sepulchre Street, Scarborough (site code: SP96), unpubl rep Environmental Archaeology Unit, York, 97/26,

Hall, A, Kenward, H, Rowland, S, and Carrott, J, 2000 Evaluation of biological remains from excavations at the former convent school, St Thomas Street, Scarborough (site code: STS99), unpubl rep Environmental Archaeology Unit, York 2000/34

Hall, C, 1990 Excavations at 10/10a St Sepulchre Street, Trans Scarborough Archaeol Hist Soc, 28, 34-9

Hurst, JG, Neal, HJE, and van Beuningen, HJE, 1986 Rotterdam Papers VI, A contribution to medieval archaeology. Pottery produced and traded in north-west Europe 1350-1650, Rotterdam

Jacobs, 2009a Friarage School Cultural Heritage Desk-Based Assessment, unpubl rep

Jacobs, 2009b 2009 Friarage Community Primary School Proposed MUGA Volume 1: Specification for Archaeological Trial Trenching, unpubl rep

Jennings, S, 1981 Eighteen centuries of pottery from Norwich, East Anglian Archaeology Rep, 13, Norwich

Payne, S, 1985 Morphological Distinctions between the Mandibular Teeth of Young Sheep, Ovis, and Goats, Capra, J Archaeol Sci, 12, 139-47

Payne, S, 1987 Reference codes for wear states in the mandibular cheek teeth of sheep and goats, Capra, J Archaeol Sci, 12, 139-47

Peglar, SM, 1993 The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations, Holocene, 3(1), 1-13

Scarborough Archaeological and Historical Society, 2003 A guide to Historic Scarborough, Scarborough

Stockmarr, J, 1971 Tablets with spores used in absolute pollen analysis, *Pollen et Spores* 13, 615-21

von den Driesch, A, 1976 *A guide to the measurement of animal bones from archaeological sites*, Harvard

APPENDIX 1: PROJECT SPECIFICATION
North Yorkshire County Council

Friarage Community Primary School
Proposed MUGA

Volume 1: Specification for Archaeological Trial Trenching

October 2009
3. Aims and Objectives

3.1 The general aim of the trial trenching is to gather sufficient information to establish the presence/absence, extent, condition, depth, character, quality and date of any archaeological deposits in order to establish the impact of the development on the archaeological resource, so that this information can be taken into account in determining a planning application. More specific aims and objectives are as follows:

- to identify, investigate and record any such archaeological remains to the extent possible by the methods put forward in this Specification;
- to clarify the presence, absence, date, character and extent of any surviving remains within the footprint of the proposed MUGA;
- to determine (so far as possible) the stratigraphic sequence and dating of the deposits or features identified;
- to establish any ecofactual and environmental potential of archaeological deposits and features and
- to provide recommendations for mitigation measures.
4. Health, Safety and Environment

4.1 While the trial trenching is not notifiable, it will be carried out in accordance with the principles set out in the Construction (Design and Management) Regulations 2007 (CDM 2007). Task method statements, risk assessments and safe plans of action are required to be submitted to and approved by the CDM Coordinator (CDMC) for the project, prior to the start of works.

4.2 A method statement shall be completed by the Contractor’s staff prior to undertaking site tasks and shall be compiled on a daily basis and updated as and when there is a change to the specified task.

4.3 The following welfare requirements are required under the Workplace (Health, Safety and Welfare) Regulations 1992 (quoted below from the 1992 Regulations) and shall be met by the Contractor:

20. – (1) Suitable and sufficient sanitary conveniences shall be provided at readily accessible places.

21. – (1) Suitable and sufficient washing facilities, including showers if required by the nature of the work for health reasons, shall be provided at readily accessible places.

22. – (1) An adequate supply of wholesome drinking water shall be provided for all persons at work in the workplace.

23. – (1) Suitable and sufficient accommodation shall be provided:

(a) for the clothing of any person at work which is not being worn during working hours; and

(b) for special clothing which is worn by any person at work but which is not taken home.

25. – (1) Suitable and sufficient rest facilities shall be provided at readily accessible places.

4.4 A first aid kit shall be available on site at all times with an accompanying accident book.

4.5 All Contractor’s site staff shall be Construction Skills Certification Scheme (CSCS) cardholders or the equivalent thereof.

4.6 Mechanical excavators shall only be operated by qualified drivers; all drivers shall be CITB/CTA approved and shall hold valid CSCS cards or the equivalent thereof.

4.7 All the Contractor’s site staff shall wear appropriate Personal Protective Equipment (PPE), consisting of: high visibility coat/vest; safety boots; hard hat; gloves; and goggles/eye protection, ear protection.
4.8 Jacobs operate a permit to dig system. No trenching or other excavations shall be undertaken without this permit being in place. Permits shall be issued on a weekly basis on the receipt of satisfactory Safe Plans of Action from the Contractor and once the Consultant is satisfied that works may continue safely. This permit may be revoked at any time by the Consultant in the event of unsafe practices or dangerous occurrences.

4.9 The possible locations of services are shown on the enclosed service plans (see Appendix 1). The Contractor shall identify all services prior to the commencement of Site Operations. The Contractor shall include in his rates and prices for this, and also taking measures for the identification, avoidance, support and full protection of pipes, cables and other apparatus, during the progress of the Site Operations including working adjacent to, traversing under or over services. The Contractor shall keep the Consultant informed of all arrangements made with the owners of privately owned services, Statutory Undertakers and Public Authorities as appropriate.

4.10 Further to the measures outlined above, the Contractor shall take all possible steps to ensure the accurate location of underground services by scanning all trench locations before beginning excavation.

4.11 Excavation either of whole trenches or of individual archaeological features shall proceed to a depth sufficient to address the objectives of the evaluation. Should support be required the Contractor shall ensure adequate measures are taken to prevent ground collapse and maintain the safety of their staff.

4.12 The number of archaeological personnel around the site works shall be kept to a minimum at all times. The number of personnel required to safely and efficiently conduct the site investigation determines the limit. In the interests of safety, excavations should be halted on the approach of any non-essential personnel.

4.13 The Contractor shall ensure that all works are executed in accordance with all relevant statutory requirements including but not limited to:

- The Health and Safety at Work Act 1974;
- The Management of Health and Safety at Work Regulations 1999;
- The Construction (Design and Management) Regulations 2007;
- The Reporting of Injuries, Diseases and Dangerous Occurrences Regulations 1995;
- Control of Substances Hazardous to Health (COSHH) Regulations 2002;
- Manual Handling (Operations) Regulations 1992, and
5. Methodology

5.1 Prior to the start of fieldwork, the Contractor shall liaise with the Yorkshire Museum in order to:

- inform them of the intended work, including its nature, location, start date and intended duration;
- obtain the agreement in principle of the relevant museum to accept the archive for long-term storage and curation;
- identify any policies of the museum in respect of selection/retention of archive materials;
- identify any requirements of the museum in respect of the format, presentation and packaging of the archive records and materials, and
- determine a policy for the selection, retention and disposal of excavated material by consultation with the museum prior to excavation.

5.2 The locations of all trenches as shown on Figure 2 shall be accurately set out and tied in to the Ordnance Survey National Grid and Ordnance Datum by instrument survey to survey accuracy (± 0.01m).

5.3 In the event that physical obstacles or other factors prevent the excavation of a trench, the Contractor shall advise the Consultant. Changes to trench location shall be undertaken only with permission of the Consultant.

5.4 The Contractor shall supply all suitable plant and materials for the excavation and backfilling of the archaeological trial trenches and the replacement of the tarmac playground surface. All such plant shall operate under the direct and continuous supervision of the Contractor.

5.5 Mechanical excavation shall cease when the first archaeologically significant horizon is encountered, or when the absence of any such horizon has been adequately demonstrated. Any further use of mechanical excavation, or any change to this methodology, shall not be undertaken without the specific permission of the Consultant in consultation with the Curator.

5.6 The Contractor shall undertake archaeological excavation by hand of any archaeological remains identified in order to address the aims and objectives of the evaluation.

5.7 The depth and complexity of all archaeological features and deposits across the whole site shall be evaluated down to the natural substrate. The stratigraphy of each trench shall be fully recorded and at least one long section of each trench shall be drawn even where no archaeological deposits have been recognised. More sections shall be drawn if necessary to properly record the deposits, and sufficient excavation shall be undertaken to ensure that all contexts shown on each section drawing can be related to a trench plan.

5.8 All excavated contexts shall be fully recorded by detailed written context records giving details of location, composition, shape, dimensions, relationships, finds, samples, cross-references to other elements of the record and other relevant contexts, etc.
5.9 Sufficient excavation shall be carried out to investigate the depth, profile and fills of all linear features, such as ditches and gullies, and to recover dating and environmental evidence from its fills. This shall usually involve a minimum of 10% sample dispersed along the length of a feature, with each sample section to be not less than 1m, or a minimum of a 1m sample section if the feature is less than 10m long, or if only a small part of it is exposed. Within trial trenches, one 1m section shall be located and recorded adjacent to the trench edge. Feature intersections shall always be excavated in such a way as to determine a stratigraphic relationship. Discrete features, such as pits, post-holes for example, shall usually be half-sectioned to determine and record their form with a minimum sample of 50% of discrete features in each area.

5.10 All features and, where possible, all deposits shall be recorded on at least one plan, normally at 1:20 scale, and at least one section drawing, normally at 1:10 scale. A complete post-excavation plan and long section of each trench at an appropriate scale shall be prepared. All drawings shall include such co-ordinate data as is necessary for the accurate location of the area planned or the section drawn and spot-heights related to the Ordnance Survey Datum and accurate to two decimal places.

5.11 All excavated features and deposits shall be recorded photographically using, as a minimum, both colour slide, and black and white negative film, in 35mm format. Additional illustrative photographs shall be taken as appropriate using colour slide and/or print film and/or digital photography.

5.12 All unexcavated archaeological features and deposits shall be recorded to the extent possible by the above methods.

5.13 All finds shall be recorded by context; individually significant finds ("special finds", typically of displayable quality) shall also be recorded three-dimensionally using a sequence of unique numbers. All artefacts recovered shall be retained and removed from site for conservation (if necessary) and specialist examination/analysis. Cleaning may take place on site or after removal, as appropriate. All recording, cleaning, storage and conservation of finds shall be in accordance with the Institute for Archaeologist’s Standard and Guidance for the collection, documentation, conservation and research of archaeological materials (2001).

5.14 In the event of human remains being discovered they shall be left in situ and covered and protected in the first instance. Where this is not feasible or practicable the removal of human remains shall only take place in compliance with the Burial Act 1857 and with an exhumation licence obtained from the Ministry of Justice (MoJ) prior to the removal of the remains. Provision shall be made for the specialist reporting of the remains by a recognised osteoarchaeologist.

5.15 All surplus or deleterious material and rubbish arising from excavations shall be removed from site to a suitably authorised facility at the Contractor’s cost. The Contractor shall backfill and compact all trenches in such a manner and with such materials that no subsidence results from settlement of the backfill and the tarmac surface shall be re-instated.

5.16 No backfilling of trenches shall be undertaken without the prior consent of the Consultant.

On-site Palaeoenvironmental Sampling Strategy

5.17 All aspects of the collection, selection, processing, assessment and reporting on the environmental archaeology component of the evaluation shall be undertaken in accordance with the principles set out in English Heritage’s Centre for Archaeology Guidelines:

5.18 A soil-sampling programme shall be undertaken during the course of the investigation for the identification and recovery of carbonised and waterlogged remains, vertebrate remains, molluscs and small artefactual material. Environmental and soil specialists shall be consulted during the course of the excavation with regard to the implementation of this sampling programme. Provision shall be made for the removal of soil samples from all securely stratified deposits which should be sampled for retrieval and assessment of all biological remains in line with the principles set out below.

5.19 Where deposits are dry, bulk samples for the recovery of charred plant remains, small bones and finds shall be taken from sealed and dateable features. Each context shall normally be sampled. The size of the sample shall be at least 40 litres per context or 100% of smaller contexts. Samples shall not be taken from the intersection of features.

5.20 Where good conditions for the preservation of bone have been identified, all large bones shall be collected by hand and sieving of bulk samples up to 100 litres shall be undertaken as appropriate. Entire contexts should be sampled if the volume is low.

5.21 Samples from waterlogged and anoxic deposits, which might contain plant macros and entomological evidence should normally be 20 litres in size. English Heritage’s guidance (2002) should be consulted for details of sample size for other specialist samples, which may be required.

5.22 Whenever possible, bulk and coarse sieved samples should be processed during fieldwork to allow the continuous reassessment and refinement of sampling strategies.

5.23 Environmental material removed from site shall be stored in appropriately controlled conditions. The processing of environmental samples shall be undertaken in accordance with the English Heritage (2002) guidance.

5.24 Suitable samples for dating shall also be recovered. Dating techniques shall only be applied after discussion with English Heritage's Regional Scientific advisor and the Curator and on written instruction from the Consultant.

5.25 A provision for the emergency conservation/stabilisation and storage of artefacts has been included under section BB12 of Appendix B to the Bill of Quantities.

Site Archive

5.26 Archive consolidation shall be completed immediately after the conclusion of fieldwork but is regarded as part of the field work process.
5.27 Adequate resources shall be provided during fieldwork to ensure that all records are checked and internally consistent.

5.28 The archive shall be assembled in accordance with the guidelines set out in English Heritage’s Management of Archaeological Projects 2 (MAP2; paragraphs 4.9, 6.8 and 6.10 and Appendix 3) and Yorkshire Museum’s “Draft Deposition Strategy for Archaeological Excavation Archives”. It shall contain all the data collected during the investigation, including all primary written documents, plans sections and photographs. It shall be quantified, ordered, indexed and internally consistent.

5.29 Archive consolidation shall be undertaken immediately following the conclusion of fieldwork.

5.30 The site record shall be checked, cross-referenced and indexed as necessary.

5.31 All retained finds shall be cleaned, conserved, marked and packaged as necessary to maintain the archive prior to transfer.

5.32 All retained finds shall be assessed and recorded using pro-forma recording sheets, by suitably qualified and experienced staff. Initial artefact dating shall be integrated with the site matrix.

5.33 In addition to the site records, artefacts, ecofacts and other sample residues, the archive shall contain:

- site matrices where appropriate;
- a summary report synthesising the context records;
- a summary of the artefact record; and
- a summary of any other records or materials recovered.

5.34 The integrity of the primary field records shall be preserved and the Contractor shall create security copies in digital, fiche or microfilm format of all primary field records.

5.35 The site archive shall be transferred to the Yorkshire Museum only after written instruction from the Consultant.
6. Post-Fieldwork Assessment and Reporting

6.1 The Contractor shall provide verbal or written progress reports and interim plans or other data at any point during the contract, on request from the Consultant.

6.2 The draft evaluation report shall be completed within 4 weeks of the completion of fieldwork (this may be subject to an extension if archaeological/artefactual/ecofactual evidence of particular significance that requires a longer period of study is identified).

6.3 Each category of data and material recovered by the fieldwork (site records/stratigraphic data, each category of artefact or other find, each category of palaeoenvironmental/economic evidence, any other data) shall be examined and assessed by a suitably qualified and experienced archaeologist or specialist in line with the principles set out in Chapter 6 of MAP2. If possible and necessary to achieve the aims and objectives of the evaluation, dating evidence shall be obtained by the application of radiocarbon, dendrochronological or other scientific dating techniques. The application of such techniques shall be paid for out of items BB6 to BB9 of Appendix B to the Bill of Quantities (Volume 2), and only under instruction from the Consultant.

6.4 The report shall clearly acknowledge the role of the Employer and the Consultant, and shall show the logo of NYCC and Jacobs. All reports shall be prepared in line with the principles set out in Appendix 4 of MAP2, and shall include as a minimum:

1) OASIS reference and an 8 figure grid reference
2) a description of the background to and circumstances of the work
3) a brief description of the previously known archaeology of the site
4) a description of the methodology used
5) an objective description of the results of the evaluation ("factual data" in MAP2)
6) an assessment of each category of data ("statement of potential" in MAP2)
7) a statement of the storage and curation requirements for each category of data and a retention/discard policy
8) a plan showing the location of the site at least 1:10,000
9) general and detailed plans at appropriate scales, showing the location of each trench or group of trenches accurately positioned on an up-to-date Ordnance Survey base
10) plans of each trench, if possible, at appropriate scales (1:10, 1:20, 1:50 or 1:100), with keys and north points
11) detailed plans and sections of individual features where necessary
12) where appropriate, complete matrix for each trench
13) all scales used on any drawings should be standard scales such as would appear on a normal scale ruler
14) such reports shall also include appropriate text describing and interpreting the results,

15) A summary statement of the results, and

16) A table summarising the deposits, features, classes and numbers of artefacts encountered and spot dates of significant finds.

6.5 In the event that the works need to be undertaken in more than one phase, appendices to the main report shall be produced describing the results of the additional works. The appendices shall include a section synthesising the results of previous investigations as well as the information about the stage of works that has just been undertaken.

6.6 One copy of a complete draft report, or additional appendix, shall be submitted in the first instance for review/checking by the Consultant who shall also consult the Curator and EHRLSA during the review period. In finalising the report, the Contractor shall take into account any comments and remedy any faults identified by the Consultant. The Contractor should note that six bound copies, one unbound copy and a digital copy (including drawings) of the final report shall be required. The finalised report shall be submitted to the Consultant within five working days of receipt of the Consultant's comments on the draft report.

6.7 Immediately upon completion of the finalised report, the report and any data or other documentation produced during the post-excavation process shall be integrated into the site archive. The Contractor shall store the archive in suitable conditions in a secure location until instructions are received from the Consultant for its deposition in the receiving museum and digital archive, or other transfer.

6.8 The results of the evaluation may be such as to warrant publication of a summary report in an appropriate academic journal. The Contractor shall include in his report a proposal as to the need for, nature of and medium for publication, but shall only proceed after instruction from the Consultant. Allowance for this has been made at Item BB13 in the Bill of Quantities (Volume 2).

6.9 One bound copy and a digital copy in PDF format of the final report shall be deposited with the Curator. Digital data derived from the report shall be provided in a format suitable for inclusion into the County HER for record enhancement purposes, and the Contractor shall liaise with the Curator to discuss the nature and format of the material required.

6.10 The North Yorkshire Historic Environment Record (HER) supports the Online Access to Index of Archaeological Investigations (OASIS) Project. The overall aim of the OASIS project is to provide an online index to the mass of archaeological grey literature that has been produced as a result of the advent of large scale developer funded fieldwork. On completion of the report, the Contractor shall make a copy accessible to the wider research community by submitting it to the OASIS Project.
7. Archive Deposition

7.1 The site archive, including finds and environmental material, subject to the permission of the relevant landowners, should be labelled, conserved and stored according to the United Kingdom Institute for Conservation’s (UKIC) Guidelines for the Preparation of Excavation Archives for Long-term Storage (Walker 1990), and the Archaeological Archives Forum’s Archaeological Archives: A guide to best practice in creation, compilation, transfer and curation (Brown 2007). The IfA’s recent draft Standard and Guidance for the creation, compilation, transfer and deposition of archaeological archives (2008), should also be taken into account.

7.2 Digital material should be fully documented and created according to recognised standards and guidelines on how data should be structured, preserved and accessed. Arrangements should also be made for the long term storage and curation of the digital archive. All of the above should be carried out in line with the Archaeology Data Service’s (ADS) Digital Archives from Excavation and Fieldwork: Guide to Good Practice (Second Edition) (Richards and Robinson 2000), and the Contractor should discuss digital archiving, storage and curation requirements with ADS to inform their approach.

7.3 The Contractor shall store the archive in suitable conditions in a secure location until instructions are received from the Consultant for the implementation of further analysis/reporting works or for the deposition of the archive in the appropriate museum or other transfer to any other third party. In the case of digital material, a trusted digital repository should be sought where data migration and backup procedures are in place, and the integrity of the digital archive is maintained.
8. Additional Instructions

8.1 General Public

8.1.1 The project may attract interest from local people or the media. The Contractor shall refer any interested parties to North Yorkshire County Council or to the Consultant without making any unauthorised statements or comments.

8.1.2 All trenches shall be securely fenced with Heras-type fencing.

8.2 Invoicing

8.2.1 Invoicing shall be as per the conditions of contract specified in the as per framework subject to certification by the Consultant.

8.3 Copyright

8.3.1 Copyright in any reports produced by the Contractor as part of this contract shall remain with the Contractor.

8.3.2 The Contractor shall licence the Employer, the Curator, the Consultant and the archive repositories to enable multiple reproduction of all reports and other material produced under this contract to be made by them for the purposes of their official functions.

8.3.3 Each landowner has been asked to transfer ownership of any artefacts recovered from their lands from them to the Yorkshire Museum. Landowners shall be given the opportunity to reconsider after the work is complete and the nature of the finds recovered is known. The Contractor shall facilitate this.

8.4 Reinstatement of Unavoidable Damage

8.4.1 The Contractor shall undertake (or sub-contract if necessary) repair of unavoidable damage caused as a direct result of complying with the terms of this specification or instruction by the Consultant. Care should be taken to avoid damage and the Contractor shall discuss any likely damage with the Consultant. These works are covered under Item BB11 of Appendix B to the Bill of Quantities (see Volume 2). Please note that this excludes re-instatement of the present playground surface.
APPENDIX 2: TRENCH AND CONTEXT DESCRIPTIONS

<table>
<thead>
<tr>
<th>Trench 1</th>
<th>Dimensions: 5m by 2m</th>
<th>Orientation: north-east/south-west</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>U/S finds from initial machining or trench.</td>
<td></td>
<td>0.00m</td>
</tr>
<tr>
<td>101</td>
<td>Tarmac</td>
<td></td>
<td>0.10m</td>
</tr>
<tr>
<td>102</td>
<td>Levelling layer from demolition of former terraces. A dark brown grey friable, fine sandy silt with c 95% red brick fragments. A maximum 0.10m by 0.08m by 0.08m.</td>
<td>0.28m</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Levelling layer. A very dark grey, loose, coarse sand silt with c 10% sub-rounded and sub-angular stone inclusions. A maximum of 0.77, 0.08m by 0.05m.</td>
<td>0.30m</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Imported topsoil. A very dark grey, firm, fine sand silt clay.</td>
<td>0.33m</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Wall and foundation of former terrace, within construction cut 117. It comprised red brick measuring 230mm by 110mm by 70mm in size, bonded by a light grey consolidated lime mortar and laid as stretch bond. The wall had been constructed on an east/west orientation.</td>
<td>1.06m</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Brick floor. It comprised red brick measuring 225mm by 110mm by 50mm, bonded by a light grey medium sand.</td>
<td>0.08m</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Disturbed cobbled surface. Cobbles present intermittently, a maximum of 0.11m by 0.10m by 0.08m in size, within a light grey, friable medium sandy silt sediment.</td>
<td>0.08m</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Levelling layer. A light orangey grey, friable, coarse sandy silt with c 5% sub-angular stone inclusions a maximum of 0.03m by 0.02m by 0.01m in size.</td>
<td>0.34m</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Imported topsoil. It comprised a very dark grey, friable, fine sand silt clay.</td>
<td>0.30m</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Subsoil. A dark orange grey, firm, silty clay.</td>
<td>0.24m</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Soil horizon. A dark orangey brown, firm, fine sand silt clay.</td>
<td>0.33m</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Glacial till. A mid-brown orange, firm, clay.</td>
<td>0.40m</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Disturbed topsoil. A dark brown grey, firm, fine sand silt clay.</td>
<td>0.14m</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Levelling deposit mixed with some topsoil. A very light grey, loose coarse sand.</td>
<td>0.12m</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Buried soil. A dark brown grey, firm, fine sand silt clay.</td>
<td>0.23m</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Redeposited topsoil. A dark grey, friable, fine sand silt clay.</td>
<td>0.12m</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Foundation cut for foundation 105. It measured 0.36m wide and 2.8m deep. It contained within the trench, with straight vertical sides, a flat base, on an east/west orientation.</td>
<td>0.50m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trench 2</th>
<th>Dimensions: 5m by 2m</th>
<th>Orientation: north-north-west/south-south-east</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>U/S finds from the excavation of Trench 2 by machine. The finds from the excavation of Trench 2 by machine.</td>
<td></td>
<td>0.00m</td>
</tr>
</tbody>
</table>
context 200 are most likely to have originated by 205, 206 or 207.

<table>
<thead>
<tr>
<th>Trench 3</th>
<th>Dimensions: 5m by 2m</th>
<th>Orientation: east-north-east/ west-south-west</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context 300</td>
<td>U/S finds from the excavation of Trench 3 by machine. The finds from context 200 are most likely to have originated by 303 or 304.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>301</td>
<td>Tarmac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>Brick floor. Located across the extent of the trench, the floor comprised red brick measuring 230mm by 114mm by 66mm, one coarse thin bonded by a light grey, friable, lime mortar.</td>
<td></td>
<td>0.14m</td>
</tr>
<tr>
<td>303</td>
<td>Imported topsoil. A very dark grey, firm, fine sand silty clay with 1% to 5% very light grey lime mortar flecks.</td>
<td></td>
<td>0.26m</td>
</tr>
<tr>
<td>304</td>
<td>Imported subsoil. A very dark orangey brown, firm, fine sand silty clay with 1% to 5% very light grey lime mortar mottles a maximum of 0.16m by 0.05m in size.</td>
<td></td>
<td>0.23m</td>
</tr>
<tr>
<td>305</td>
<td>Redeposited natural clay. It comprised a mid-grey orange clay.</td>
<td></td>
<td>0.30m</td>
</tr>
<tr>
<td>306</td>
<td>Deposit used to backfill postulated river channel. It comprised a very dark grey, firm, medium sand silty clay with 1% to 5% light grey lime mortar flecks.</td>
<td></td>
<td>0.30m</td>
</tr>
<tr>
<td>307</td>
<td>Deposit used to backfill postulated river channel. It comprised a very dark grey, firm, medium sand silty clay with 10% sub-rounded and sub-angular stone inclusions a maximum of 0.60m by 0.50m by 0.40m in size.</td>
<td></td>
<td>Unknown</td>
</tr>
</tbody>
</table>
Trench 4

<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Tarmac.</td>
<td>0.10m</td>
</tr>
<tr>
<td>401</td>
<td>Levelling layer. It comprised a mid-red, loose, medium sand with 60% to 70% red brick fragments.</td>
<td>0.11m</td>
</tr>
<tr>
<td>402</td>
<td>Disturbed brick floor. It comprised red brick 337mm by 121mm 58mm in size located across the trench.</td>
<td>0.11m</td>
</tr>
<tr>
<td>403</td>
<td>Levelling deposit. It comprised a dark greyish brown, friable, silty clay with 10% charcoal flecks.</td>
<td>0.08m</td>
</tr>
<tr>
<td>404</td>
<td>Levelling deposit. It comprised a mid-red, firm, clay.</td>
<td>0.01m</td>
</tr>
<tr>
<td>405</td>
<td>Deliberate backfill of pit 429. It comprised a dark brownish grey, friable, silty clay. Within the deposits were 10% mid-grey orange grey clay mottles, 5% light grey lime mortar flecks, 5% charcoal flecks and 10% sub-rounded stone inclusions.</td>
<td>0.37m</td>
</tr>
<tr>
<td>406</td>
<td>Deliberate backfill of pit 429. It comprised a light yellowish brown, friable, silty sand with c 40% small rounded stone inclusions and 5% charcoal flecks.</td>
<td>0.22m</td>
</tr>
<tr>
<td>407</td>
<td>Imported soil. A dark grey, friable, silty clay with 20% small stone inclusions and 5% charcoal flecks.</td>
<td>0.22m</td>
</tr>
<tr>
<td>408</td>
<td>Levelling layer. A dark grey, friable, silty clay with 10% small stone inclusions and 5% charcoal flecks</td>
<td>0.48m</td>
</tr>
<tr>
<td>409</td>
<td>Wall, comprised of red brick. It Measured 168mm by 114mm 56mm, laid in an English Garden Wall bonding pattern, bonded by light grey consolidated cement. It was only partially visible for 1.0m of the south facing section of the trench.</td>
<td>0.45m</td>
</tr>
<tr>
<td>410</td>
<td>Brick and cement use as levelling for wall 409. It comprised brick laid as headers, 118mm wide and 60mm thick, within a light grey consolidated cement.</td>
<td>0.12m</td>
</tr>
<tr>
<td>411</td>
<td>Sandstone foundation. It comprised roughly hewn sandstone. It was a maximum of 0.48m in length and 0.27m thick, roughly coursed, bonded by a light grey, consolidated, cement mortar.</td>
<td>0.57m</td>
</tr>
<tr>
<td>412</td>
<td>Soil, which was possibly imported onto the site. A dark brownish grey, friable, silty clay with c 10% small to medium sized sub-rounded stone inclusions and 10% charcoal flecks.</td>
<td>0.37m</td>
</tr>
<tr>
<td>413</td>
<td>Clay lens at top of cut 430. A Mid-reddish brown, firm, clay.</td>
<td>0.01m</td>
</tr>
<tr>
<td>414</td>
<td>Deliberate backfill of 430. A light grey, friable, silty clay containing 5% charcoal flecks and 5% light grey lime mortar flecks.</td>
<td>0.12m</td>
</tr>
<tr>
<td>415</td>
<td>Deliberate backfill of 430. Dark red, friable, sandy silt containing 5% charcoal flecks.</td>
<td>0.07m</td>
</tr>
<tr>
<td>416</td>
<td>Deliberate backfill of 430. A light pinkish brown, firm, lay.</td>
<td>0.29m</td>
</tr>
<tr>
<td>417</td>
<td>Deliberate backfill of 430. A very dark grey, loose, silty clay containing 5% charcoal flecks.</td>
<td>0.37m</td>
</tr>
<tr>
<td>418</td>
<td>Deliberate backfill of 430. A light brown grey, friable, silty clay containing 20% light grey lime mortar fragments and 5% small sub-rounded stone inclusions.</td>
<td>0.26m</td>
</tr>
<tr>
<td>419</td>
<td>Deliberate backfill of 430. A dark grey, friable, silty clay containing 10% charcoal flecks.</td>
<td>0.20m</td>
</tr>
<tr>
<td>420</td>
<td>Preserved subsoil, or interface between glacial till 433 and a now lost river channel.</td>
<td>0.27m</td>
</tr>
</tbody>
</table>
soil horizon. It comprised a mid-orangey brown, firm, silty clay.

421	Deliberate backfill of cut 431. It comprised a mid-grey, friable, silty clay with c 15% light grey lime mortar flecks.	0.68m
422	Deliberate backfill of cut 432. It comprised a mid-yellowish grey, fine sandy clay containing c 5% charcoal flecks and c 10% small sub-angular stone inclusions.	0.50m
423	Levelling deposits, mix of soils and other sediments. It comprised a mid-greyish brown, friable, silty clay containing c 10% charcoal flecks, thin lenses of charcoal, and c 10% small sub-angular stone inclusions.	0.50m
424	Levelling deposit. It comprised a light grey, friable, silty sand with 5% small light grey lime mortar inclusions.	0.24m
425	Levelling deposit. It comprised a dark reddish grey, firm, silty clay with c 10% charcoal flecks and c 5% small sub-rounded stone inclusions.	0.09m
426	Levelling deposit. It comprised a light brownish grey, firm, silty clay containing c 5% charcoal flecks.	0.05m
427	Layer. It comprised a dark reddish brown, firm, silty clay with c 5% charcoal flecks and c 5% small sub-angular stone inclusions.	0.12m
428	Preserved subsoil, or interface between glacial till and a now lost horizon. It comprised a mid-grey brown, firm, silty clay with c 5% charcoal flecks.	Unknown
429	Possible pit. Cut recorded in east facing section, containing backfill deposits 405 and 406. It comprised straight vertical sides and a concave base, measuring at least 0.41m in diameter.	0.57m
430	It is unclear if this is a deliberate cut, or a filled depression in 420 measured 0.77m in length and 0.42m wide with an irregular shape plan and irregular side.	0.26m
431	Pipe trench. This linear was located across the trench, on a north-east/south-west orientation, measuring at least 0.82m wide comprising straight near vertical sides and a flat base.	0.68m
432	Possible pit. Recorded in the south-facing section, comprising straignt sides of a ratio of 1:2 and a flat base.	0.50m
433	Glacial till. It comprised a mid-grey orange, firm, clay.	Unknown
434	Construction cut for foundation 411/410. It comprised straight, vertical sides and a flat base. The width is unknown, as the cut continued beyond the northern limit of excavation, but was at least 0.16m wide.	Min 0.59m
435	Fill of 434. Very dark grey find sand silty clay.	0.38m

Trench 5

Dimensions: 5m by 2m
Orientation: east-north-east/west-south-west

<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>U/S finds from machining of Trench 5.</td>
<td>-</td>
</tr>
<tr>
<td>501</td>
<td>Tarmac</td>
<td>0.10</td>
</tr>
<tr>
<td>502</td>
<td>Backfilled deposit within pit 504. It comprised a very dark grey, friable fine sand silty clay.</td>
<td>0.36m</td>
</tr>
<tr>
<td>503</td>
<td>Levelling deposit. It comprised a very dark grey coarse sand silty clay with frequent sub-angular stone.</td>
<td>0.09m</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Depth</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>504</td>
<td>Sub-circular pit? It continues beyond the southern limit of excavation and was probably the same feature as 508 to the east of footing 513 comprised a sub-circular cut at least 1.20m by 1.03m in size, with concave sides and base.</td>
<td>0.48m</td>
</tr>
<tr>
<td>505</td>
<td>Fluvial deposit. It comprised a mid-brown grey, firm, silty clay.</td>
<td>Min 0.28m</td>
</tr>
<tr>
<td>506</td>
<td>Fluvial deposit. It comprised a mid-orangey grey clay.</td>
<td>Min 0.20m</td>
</tr>
<tr>
<td>507</td>
<td>Fluvial deposit. It comprised a mid-pinkish brown, firm, silty clay containing c 5% small sub-angular stone inclusions and c 5% charcoal flecks.</td>
<td>1.12m</td>
</tr>
<tr>
<td>508</td>
<td>Sub-circular pit? It continues beyond the southern limit of excavation and was probably the same feature as 504 to the west of footing 513 comprised a sub-circular cut at least 2.25m by 0.94m in size, with concave sides and base.</td>
<td>0.40m</td>
</tr>
<tr>
<td>509</td>
<td>Deliberate backfill of pit 508. It comprised a dark bluish grey, friable silty clay.</td>
<td>0.94m</td>
</tr>
<tr>
<td>510</td>
<td>Pit? Recorded on section, although not visible as a separate feature from a postulated river channel in plan as sealed below very similar deposit 511. It comprised concave sides and base, at least 1.60m length and 1.39m wide.</td>
<td>0.32m</td>
</tr>
<tr>
<td>511</td>
<td>Layer, with some soil structure. It comprised a dark grey brown, friable fine sand silty clay.</td>
<td>0.22m</td>
</tr>
<tr>
<td>512</td>
<td>Deliberate backfill of pit 504. It comprised a dark grey brown fine sand silty clay with lenses of burnt material.</td>
<td>0.13m</td>
</tr>
<tr>
<td>513</td>
<td>Sandstone footing. It comprised mid-yellow, roughly square sandstone a maximum of 0.24m by 0.20m by 0.17m and a minimum of 0.09m by 0.08m by 0.08m in size. The stone was coursed, and bound together by a light grey lime mortar. The footing measured 0.5m wide, orientated on a Min 0.24m</td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>Imported soil? It comprised a dark brown grey fine sand silty clay.</td>
<td>0.16m</td>
</tr>
<tr>
<td>515</td>
<td>Deliberate backfill of pit 510. It comprised a very dark brown grey friable, silty clay containing c 5% charcoal flecks.</td>
<td>0.32m</td>
</tr>
<tr>
<td>516</td>
<td>Cut of former river channel. It comprised straight sides, falling at a rate of 1:1. Not fully excavated.</td>
<td>Min 0.60m</td>
</tr>
<tr>
<td>517</td>
<td>Fluvial deposit? It comprised a dark grey fine sand silt.</td>
<td>Min 0.60m</td>
</tr>
<tr>
<td>518</td>
<td>Brick floor. Located across the extent of the trench, the floor comprised red brick measuring 230mm by 114mm by 66mm, one coarse thick bonded by a light grey, friable, lime mortar.</td>
<td>0.17m</td>
</tr>
<tr>
<td>519</td>
<td>Construction cut for footing 513. It comprised straight vertical sides.</td>
<td>Min 0.24m</td>
</tr>
</tbody>
</table>
Trench 4

Diagram of Trench 4 with numbered levels from 400 to 433.
ILLUSTRATIONS

LIST OF FIGURES

Figure 1: Site location
Figure 2: Trench location plan
Figure 3: View of Scarborough, dating to the 1530’s (Pearson 2005, 14)
Figure 4: Extract from Cossin’s map of 1725 (Jacobs 2009a), the area of the Friarage School is marked in red
Figure 5: Extract from Hinderwell’s plan of 1778 (Jacobs 2009a); the indicative area of Friarage School is marked in red
Figure 6: Extract from Ainsworth’s plan of 1842 (Jacobs 2009a); the indicative area of Friarage School is marked in red
Figure 7: Extract from the Ordnance Survey map of 1891 (Jacobs 2009a); the indicative area of Friarage School is marked in red
Figure 8: Plan of Trench 1
Figure 9: South-east facing section of Trench 1
Figure 10: Plan of Trench 2
Figure 11: East-facing section of sondage in Trench 2
Figure 12: West-facing section of Trench 2
Figure 13: Plan of Trench 3
Figure 14: South-facing section of sondage in Trench 3
Figure 15: South-facing section of Trench 3
Figure 16: Plan of Trench 4
Figure 17: South-facing section of Trench 4
Figure 18: East facing section of Trench 4
Figure 19: Plan of Trench 5
Figure 20: South and west-facing sections of sondage in south-eastern corner of Trench 5
Figure 21: North-facing section of Trench 5
Figure 22: Suggested course of the Damyot based on results of the trial trenches

LIST OF PLATES

Plate 1: Trench 1, looking north-east
Plate 2: Trench 2, looking south
Plate 3: Partial excavation of 201 in Trench 2, looking east
Plate 4: Brick surface 203 in Trench 2, looking south
Plate 5: Trench 3, looking east

Plate 6: Sondage through deposits 306 and 307 in Trench 3

Plate 7: Brick surface 302, looking west

Plate 8: South-facing section of Trench 3, western end, looking north

Plate 9: East-facing section of Trench 3, looking west

Plate 10: South-facing section of Trench 3, eastern end, looking north

Plate 11: Trench 5, looking west

Plate 12: Machine-excavated sondage through deposits 507 and 517 in Trench 5, looking north

Plate 13: Pit 510, looking north

Plate 14: Pit 508 in Trench 5, looking east

Plate 15: Pit 504 in Trench 5, looking west
Figure 3: View of Scarborough, dating to the 1530s (Pearson 2005, 14)
Figure 4: Extract from Cossin’s map of 1725 (Jacobs 2009a), the area of the Friarage School is marked in red.

Figure 5: Extract from Hinderwell’s plan of 1778 (Jacobs 2009a); the indicative area of Friarage School is marked in red.
Figure 6: Extract from Ainsworth’s plan of 1842 (Jacobs 2009a); the indicative area of Friarage School is marked in red

Figure 7: Extract from the Ordnance Survey map of 1891 (Jacobs 2009a); the indicative area of Friarage School is marked in red
Figure 8: Plan of Trench 1

- Limit of excavation
- Context number
- Levels
- Section drawn
Figure 12: West-facing section of Trench 2

Context number

Limit of excavation

Levels

N

S

0.5 m

0
Plate 1: Trench 1, looking north-east

Plate 2: Trench 2, looking south
Plate 3: Partial excavation of 201 in Trench 2, looking east

Plate 4: Brick surface 203 in Trench 2, looking south
Plate 5: Trench 3, looking east

Plate 6: Sondage through deposits 306 and 307 in Trench 3
Plate 7: Brick surface 302, looking west

Plate 8: South-facing section of Trench 3, western end, looking north
Plate 11: Trench 5, looking west

Plate 12: Machine-excavated sondage through deposits 507 and 517 in Trench 5, looking north
Plate 13: Pit 510, looking north

Plate 14: Pit 508 in Trench 5, looking east
Plate 15: Pit 504 in Trench 5, looking west