Neolithic and Bronze Age Ritual Landscape at Barford Road, Eynesbury, St Neots

Steve Kemp
1998

Cambridgeshire County Council
Report No. 148

Commissioned By Phillips Planning Services and the Trustees of the Banks Family Settlement
Neolithic and Bronze Age Ritual Landscape at Barford Road, Eynesbury, St Neots

Steve Kemp BA, MSc, AIFA

1998

Editor: Tim Malim BA
Illustrators: Jon Cane BA, Carole Fletcher BA and Caroline Gait BA, MPhil

With Contributions by Jon Last PhD, Duncan Schlee MSc

Report No 148

©Archaeological Field Unit
Cambridgeshire County Council
Fulbourn Community Centre
Haggis Gap, Fulbourn
Cambridgeshire CB1 5HD
Tel (01223) 881614
Fax (01223) 880946
Neolithic and Bronze Age Ritual Landscape at Barford Road, Eynesbury, St Neots

SUMMARY

Archaeological evaluations were undertaken at Barford Road Farm, Eynesbury, St Neots by the Archaeological Field Unit of Cambridgeshire County Council. The study area consists of 41 ha. allocated in the Huntingdonshire Local Plan for housing, open space and business uses. The development site lies to the south of Eynesbury St Neots, to the north of the A428 and the Great Ouse River lies immediately to the west.

A suite of archaeological techniques has been used to investigate the potential survival of prehistoric remains and their importance in an area outlined within the local plan for development. Aerial photographs had already revealed a series of enclosures interpreted as Neolithic cursuses and associated monuments. In order to assess the validity of this interpretation and the implied rarity of these features non-intrusive methods including fieldwalking and geophysical survey were undertaken and later supplemented by test pitting and trenching.

The fieldwalking and geophysical survey proved to be of limited value, whilst the intrusive field investigations has allowed the following conclusions to be drawn:

1. All of the cropmarks visible on the aerial photographs were recognised as archaeological features within the trenches and a few additional field boundaries and pits were found.

2. The cropmark features were found to exist to a maximum depth of 0.71m (post-holes) although the cursus ditches were between 0.37 and 0.57m in depth.

3. The depth of features and their disparate nature meant that the basal fills to the prehistoric ditches and pits were in good condition and contained uncontaminated archaeological deposits. However, all features have been truncated by ploughing.

4. Two previously unidentified components of the prehistoric landscapes were recognised in addition to the features seen on the aerial photographs. These consisted of late Bronze Age/early Iron Age pits with fills and artefacts which are indicative of prehistoric occupation.

5. No upstanding prehistoric earthwork remains were found associated with the long barrow, ring ditches, or cursus monuments.

6. The area to the east of the prehistoric monuments was found to contain Romano British and later field systems and trackways, as well as a single isolated ring ditch which lies adjacent to the roundabout immediately to the north of the Tesco superstore.

7. Due to the acidic soil conditions environmental remains were not of value.

8. Except in a few isolated cases (i.e. pits in Trench 14) artefactual remains were sparse.

9. The absence of pottery or other datable evidence from many of the excavated features meant that the period of construction, which was originally based on the aerial photographic interpretation, could not be refined.
TABLE OF CONTENTS

1	INTRODUCTION	1
2	TOPOLOGY AND GEOLOGY	1
3	BACKGROUND	3
4	METHODOLOGY	6
5	RESULTS	7
5.1	Introduction	7
5.2	The stratigraphic sequence	7
5.3	The archaeology	8
5.4	Prehistoric archaeology	8
5.5	Roman	17
5.6	Anglo-Saxon	18
5.7	Medieval and post-medieval	19
5.8	Modern	19
5.9	Undated	19
5.10	Finds	19
5.11	Environment	20
6	CONCLUSIONS	20

ACKNOWLEDGEMENTS

BIBLIOGRAPHY

LIST OF FIGURES

Figure 1	Site location	2
Figure 2	Location of trenches, cropmarks and flint (lithic) scatter	4
Figure 3	Northern cursus and long barrow	9
Figure 4	Central cursus and pit alignment	12
Figure 5	Ring ditch and pit alignment	14
Figure 6	Sections of selected features	15

APPENDICES

| A | Pottery assessment |
| B | Environmental assessment |
INTRODUCTION

The Archaeological Field Unit of Cambridgeshire County Council undertook an evaluation of an area of 41 ha. which lies to the south of Eynesbury during September 1997. The proposed development area lies between Barford Rd in the east, Eynesbury St Neots in the north, the Great Ouse River in the west and the A428 to the south. This evaluation was undertaken for Phillips Planning Services of Bedford acting on behalf of the Trustees of the Banks Family Settlement.

The archaeological evaluation was in response to planning application H0469/95 and follows the recommendations made in a desktop survey undertaken by the Archaeological Field Unit and with additional advice from the County Archaeology Office (Oakey 1996). The evaluation strategy was detailed in the specification prepared by the Archaeological Field Unit and agreed by the County Archaeology Office prior to the fieldwork.

The proposed development consists of areas for residential, employment, community facilities and shops on the eastern half of the evaluated area. The western side will consist of public open space comprising of private moorings and landscaped areas. No detailed design plans were available prior to the evaluation.

The aims of the field evaluation were to define the extent and density of the surviving archaeology within the development area. Additional aims were to record the types of features, their condition and date. The potential for rich organic remains were indicated by the presence of palaeochannels which cut through the development area. These suggested a wealth of potential environmental data which would aid the reconstruction of the prehistoric landscape in which the archaeology is set, however, the present programme of evaluation has demonstrated that these deposits were dry and did not fulfil their potential.

TOPOLOGY AND GEOLOGY

The area under consideration lies adjacent to the existing floodplain of the Great Ouse River and has a geology of first and second terrace gravels. Aerial photographs as well as the topography of the site show linear undulations in the gravel which extend northwards from the main channel of the Great Ouse River. Prior to these investigations gravel ridges were believed to bound channels associated with a former course of the river. However, these investigations proved that these were shallow riverine scour features possibly associated with late last glacial flooding of the area. These have become infilled with at least two phases of alluvium, the last of which seals the Iron Age archaeology lying within the channel. Aerial photographs and excavation also indicated the presence of a large number of periglacial structures associated with freeze thaw processes. Excavation revealed root structures indicative of an environment that was once wooded.
2.2 As well as affecting the location of contemporary activities in prehistoric times the areas of alluviation could also seal and protect aspects of the archaeological record, potentially preserving features, buried landsurfaces and organic remains. The presence of alluvium and archaeology together indicated a high potential for the area, which could not be proven in advance of the present field work as the alluvium could have masked some of the archaeology from non-destructive reconnaissance techniques such as aerial photography, geophysical and fieldwalking surveys, particularly within the infilled channels. Some measure of protection has been found within the channels (Trench 14) on the western side of the development area, but this does not continue over the archaeology which lies to the east.

3 BACKGROUND

3.1 During 1995 archaeological analysis of the development area began with a desktop assessment. Analysis consisted of an assessment of the Sites and Monuments Record, excavations which have occurred in proximity to the site, historic cartographic and documentary sources, as well as the aerial photographs. The area was fieldwalked to recover artefacts lying on the ploughed surface of the field and an auger survey was undertaken to assess the extent of alluvial cover.

3.2 The reassessment of aerial photographs taken between 1959 and 1992 provided a detailed plot of the archaeology. Photographs taken in 1991 and 1992 may have failed to pick up any of the cropmarks visible during earlier flights and by the farm foreman throughout the 1990’s because the crop condition may not have been appropriate for the development of cropmarks at the time of the aerial reconnaissance.

3.3 Fieldwalking proved to be an extremely informative technique. One major flint scatter which was evaluated as part of this field examination of the site. No features were found to be associated with this lithic scatter during the evaluation and the scatter was found to be wholly contained within the topsoil. Fieldwalking also proved that it was possible to map out the extent of alluviation by visual inpection. The alluviation was found to be restricted to the scour channels and not to the eastern half of the development area as originally thought. This indicated that the cropmarks were probably a fair reflection of the larger archaeological features and therefore the monuments were restricted to a narrow band which runs north-south through the development area (Figure 2). The auger survey provided very little useful information as to the depth of alluvium as the survey became restricted by the very dry and compacted nature of the subsoil.

3.4 As a result of analysing excavations outside of the study area the desktop survey highlighted the potential survival of prehistoric and historic remains within the development area. It was considered that they may or may not extend into the development area.

3.5 The earliest known archaeological remains lay immediately to the south of the present development area where Mesolithic flint artefacts were found during excavations prior to the construction of the A428 (Herme unpub.). Palaeolithic stone tools have been found within the Ouse Valley gravels indicating the potential for similar remains within the development area, however, if present it is likely that they will only be affected by gravel extraction within the area of proposed moorings.
Figure 2 Location of trenches, cropmarks and flint (lithic) scatter.
3.6 In 1984 Herne found Mesolithic and Neolithic flint scatters as well as late Neolithic pottery beneath a Bronze Age round barrow lying on the southern edge of the development area (Figure 1). Apart from Herne's evidence for Neolithic settlement this site appears to be part of a ceremonial complex of Neolithic, Bronze Age and Iron Age remains which extend through the development area and which this assessment is concerned with. These monuments include cursuses, pit alignments and ring ditches. One of the ring ditches associated with this complex was partially excavated in 1993 by the Archaeological Field Unit prior to construction of the Tesco Superstore (Figure 1). This ring ditch survived as a very shallow ditch with a number of associated pits and post-holes (Kemp 1993). Excavations by the Archaeological Field Unit in 1994 recognised the boundary ditches associated with the northern cursus which extend into the school grounds to the north of the development site (Macaulay 1994). Fieldwalking in 1996 recovered late Mesolithic and Neolithic flint tools and cores from the development area (Oakey 1996). These results showed the prehistoric potential of the area.

3.7 Excavations along the routeway of the A428 found Iron Age pottery and evidence for late prehistoric ploughing adjacent to the development area (Herne unpub.). Cropmarks on aerial photographs from 1959 may indicate the presence of an Iron Age settlement on the eastern side of Barford Road. A pair of parallel ditches indicative of a trackway leads westwards away from these cropmarks and into the development area. This trackway was evaluated in 1993 and Roman pottery retrieved suggesting that the trackway and settlement may have been long-lived extending from the Iron Age into the Roman period. Excavations in 1994 adjacent to Tesco's superstore revealed the remains of a field system probably associated with this settlement. Earlier evidence suggested that Iron Age and Roman remains consist of trackways and field systems within the development area and that any settlement lay outside.

3.8 Apart from the possible Romano-British settlement lying to the east of Barford Road a settlement or villa site lies to the north of the development area within the grounds of the School. The area around the caravan park is known to metal detectorists as being particularly rich in Roman metal work. One of the ditches excavated by Macaulay in 1994 was found to contain Roman pottery. This ditch extends southwards into the development area and has been interpreted as a continuation of a Roman trackway found within the Eynesbury Rovers football pitch (Alexander 1993, Macaulay 1994). Cropmarks have been used to suggest the presence of a small Roman villa within the development area, however, fieldwalking has offered no support for this interpretation (Oakey 1996). As with the Iron Age archaeology the evidence suggested that the main occupation areas lay outside the development area during Roman times. Apart from the presence of the trackways and field systems which are known to exist in the area it is possible that small scale crop processing sites may lie as satellites to the main settlements within the existing development area.

3.9 Five Saxon burials were found during excavations by Herne in 1984. These were found dug into the Bronze Age barrow, the site of which now lies beneath the A428. Spoerry suggests that a farmstead of this period lies in the vicinity (Spoerry forthcoming), however, finds from this date were not found during the fieldwalking.

3.10 Medieval cultivation strips have been identified from aerial photographs and excavation; these are consistent with the historic maps of the area. This evidence indicates that the development area was covered by an extensive arable field system throughout the medieval and post-medieval periods.
3.11 The medieval open field system was enclosed in 1800 (Way 1993). Between 1800 and 1882 the Barford Road Farm buildings were constructed on the eastern side of the development area and have only recently been demolished.

4 METHODOLOGY

4.1 This phase of evaluation follows the recommendations made within the desktop survey and by the County Archaeology Office. Archaeological work was designed to investigate both the extent and intensity of prehistoric and historic activity within the development area. A scheme of trenching, test-pitting and geophysical survey was designed to fulfil the aims of the project and complement previous phases of research within the development area (Figure 2).

4.2 Trenches were focused on individual monuments such as the ring ditch, presumed Roman villa and long barrow identified during the aerial photographic assessment. Other trenches were located to cut across the cursus monuments and trackways which run through the site. Additional trenches were used to assess the presence of archaeology in areas in which cropmarks were not visible on the aerial photographs and also to assess for the survival of organic sediments within areas of deeper soil which were presumed to be extinct paleochannels associated with a former course of the River Great Ouse. Overburden was removed within the trenches by machine and taken straight down on to the natural sands and gravels unless features were visible at a higher level. However, due to the potential risk of injury as a result of deep trenches being left open adjacent to footpaths many of the trenches to the west of the site which cut through the infilled channels were only machine excavated to the junction between the two alluvial deposits. Excavation of these trenches was completed when they could be adequately monitored, they were stripped down to the natural sands and gravels. At which point they were recorded and rapidly backfilled for safety purposes.

4.3 Test-pitting was used to assess the flint scatter identified during field walking. Surface visibility within the area and across the whole field was poor therefore it was not possible to locate the test-pits the presence of artefact scatters. Test-pits were therefore located on the basis of previous artefact collections which was tied in by a TST survey. Eleven test-pits 1sq. m were hand excavated in order to recover artefacts from the top-soil and assess the presence of an in situ knapping surface. These were subsequently extended by machine excavation in order to aid the identification of archaeological features by adding a 2sq. m test-pit on the western side of each of the original hand dug test-pits.

4.4 Hand excavation of features was undertaken within the machine cut trenches. Slots of about 1m wide were hand dug through ditches whilst pits and post-holes were half sectioned. A sample of exposed features were excavated in order to characterise features in terms of form, fills, and date. Field records were made for excavated and unexcavated features of probable archaeological origin. These were then planned using a total station with plans generated on computer at our Fulbourn offices and verified on-site. Where features were excavated 1:10 sections were drawn in order to record the depositional sequence within these features. A photographic record of all excavated archaeological features was made.

4.5 Environmental samples were recovered from the features during excavation following advice of the AFU’s Environmental Officer (Appendix B). The
decision to sample was markedly affected by the surviving depth of feature, fill type and the presumed date of these features. Sampling therefore tended to concentrate on the deeper prehistoric features.

4.6 Geophysical survey was undertaken within the development area. The survey was divided up into two stages, the first of which was designed to assess whether the technique was appropriate. If so a 25ha. survey would be undertaken in order to look at the density of archaeological features within the survey area. In the first instance a 33% sample of a 3ha. area was undertaken using a Geoscan FM36 fluxgate gradiometer. Survey occurred within areas adjacent to where the cropmarks were visible in the trenches as archaeological features. The survey areas ran over the long barrow, the entrance to the northern cursus, and one of the pit alignments. Unfortunately as can be seen from Figure 2 the response recorded by this technique did not accord with either the cropmarks or the features revealed in the trenches. This method proved to be entirely unsuccessful with the responses received being largely associated with land drains. Due to the negative results of this technique we did not proceed with the additional 25 ha. scan, and instead, existing trenches were expanded to clarify aspects of the archaeology.

4.7 A metal-detector survey was undertaken on 24th September by the St Neots Artefact Club under the supervision of the on-site archaeologists. The development area was divided up into four areas which were demarcated by modern tracks which cross the site. Artefacts consisted of two Roman coins of 2nd-3rd century date as well as a large assortment of late medieval and modern farming metalwork.

5 RESULTS

5.1.1 The archaeology found during trench and test-pit excavation, and by survey are described below according to the monument type or by area where there was no particular fixed point of archaeological focus. The targeting of trenches has been with reference to the cropmarks and fieldwalking evidence.

5.1.2 Figure 2 shows the relationship of the archaeology found within the trenches with the aerial photographic plot as well as other archaeological information gained during the assessment of the development area. Due to alterations in the modern tracks, field boundaries and roads the existing landscape features since the aerial photographs were taken it has proved difficult to tie the cropmarks into the modern landscape. The cropmark plot was therefore rotated to provide the best fit with the archaeology discovered within the trenches. This best fit resulted in an error of about 2m for parts of the central cursus.

5.2 The Stratigraphic Sequence

5.2.1 The basic stratigraphic sequence across the whole of the development area consists of: Topsoil overlay a subsoil which consists of disturbed natural and feature fills. Within the channels these deposits are mixed with alluvium. Subsoil disturbance has resulted from a combination of modern ploughing and medieval cultivation; the medieval cultivation strips survive as furrows cutting in to the gravels. Beneath the subsoil lay the river gravels.

5.2.2 Pure alluvium lies beneath the topsoil only within the former channels which occur in a number of places within the development area. Here two distinct layers of alluvium are recognisable; an upper silty clay deposit overlying a
sandy silt. Within the channels the archaeology was found below the upper alluvium, indicating at least two phases of alluviation which is contrary to the pattern of alluviation from the aerial photographs which suggested that prehistoric remains cut through the alluvium. East of the palaeochannel cut by Trenches 12, 13, 14, 15, 19 and 20 the spread of alluvium suggested by aerial photography has been shown not to exist. Alluvium was absent from Trenches 11, 10 and 18, where archaeology was present within these trenches it lay below the topsoil and cut directly into the terrace gravels. The alluvium has not been observed outside of these channels suggesting that alluviation was either very restricted or that if the alluvial sediments had extended over greater areas these have since become incorporated into the plough soil.

5.2.3 Natural features were found throughout the stratigraphic sequence and consisted of features resulting from periglacial and tree root activity. None of these features are shown on any report illustrations, however, where they were initially thought to have been archaeological their location has been recorded on the site survey.

5.3 The Archaeology

5.3.1 Archaeological features could only be clearly seen following the removal of the topsoil and subsoil. Archaeological features were also found following the removal of the upper alluvium within the palaeochannels.

5.3.2 The majority of the prehistoric archaeology identified from the aerial photographs was found to survive and was visible within the machine excavated trenches. The monuments are described below in terms of their aerial photographic interpretation and are listed according to their location, starting with the long barrow and working southwards across the development area. The prehistoric pits and post holes are subsequently described before discussing the archaeology of the Iron Age, Roman, Anglo-Saxon, Medieval, post-Medieval and modern periods.

5.4. Prehistoric Archaeology

5.4.1 Presumed Long Barrow. 58m long and 24m wide. North-south orientation. (Figure 3)

5.4.1.1 Trench 9 cut across the location of the cropmark feature interpreted as a long barrow lying on a high point within the terrace gravels. A single segment was excavated through the eastern boundary ditch of this feature. This segment only extended half way across the ditch as the original length of the trench only extended to this point. The trench was extended prior to backfilling in order to more accurately define the eastern and western boundaries to the monument. The eastern ditch was 7m across which according to the cropmark plot was about the maximum width that the ditch attains. On the western side of the trench the opposing ditch was only 3m wide. The excavated ditch segment was 0.90m in depth dipping gradually to a flat base. The ditch was filled with yellow brown silty sands with the sand and gravel components increasing with depth. At the base the gravel component was as much as 50% within a sandy matrix suggesting that infilling occurred with little altered sand and gravels. This fill may suggest that the sides of the ditches may have collapsed into the ditch or that either a bank mound stood for a short time within the enclosure prior to 'slipping' into the ditch. No evidence for this deposit survives in the trench section and no prehistoric features were found to be internal to the monument within this trench.
Figure 3 Northern cursus and long barrow
5.4.1.2 The geophysical survey area of 20m x 100m ran east-west across the northern half of the long barrow in order to confirm the shape of the monument and assess for internal features. Unfortunately the technique was only able to detect a series of features which are presumed to be the remnants of medieval furrows and modern land drains.

5.4.1.3 No pottery was recovered from the long barrow boundary ditch. The only finds were an undiagnostic flint flake and a sheep’s tooth. Fieldwalking as part of the desktop survey found two undiagnostic flint artefacts adjacent to the long barrow.

5.4.2 Enclosure (SMR 4253). 18m by 14m (Figure 3)

5.4.2.1 Trench 11 crossed the putative site of a Roman villa recorded on the Sites and Monuments Record. No Roman finds were recovered whilst fieldwalking to support this interpretation. Excavation within this trench revealed two parallel ditches of a slightly curvilinear form. Extension of the trench south-westwards prior to backfilling supports the aerial photographic image of a small enclosure of a complex shape. Within the main trench the parallel ditches are set at 13m apart forming a semi-circular form on the south-western side which becomes rectangular to the north-east where the ditches are interrupted as indicating an entranceway into the monument.

5.4.2.2 Both excavated segments ([43] and [49]) consisted of steep-sided V-shaped ditches with flat bases, in the case of the northern segment [43] the base took the form of a narrow slot 0.20m in width (Figure 6, section 11). Both ditches were of comparable depth (0.90m), however, [43] was 1.20m in width whilst [49] was 1.80m. These ditches were filled with a yellowish brown sandy silt matrix with less than 2% flint gravels. The matrix in the northern segment ([43]) has a slightly clayier consistency towards the base of the ditch segment otherwise sedimentation is comparable between the two profiles. This suggests that these were probably infilled at the same time and are one and the same ditch. The very small gravel component suggests that the gravels removed during the ditch digging were not used for a bank adjacent to the ditches.

5.4.2.3 No pottery was recovered from either of these features, however, a single flint flake was retrieved from the upper fill of [49]. Another undiagnostic flint flake was found 20m to the west of the monument during fieldwalking.

5.4.2.4 Much of the enclosed area of the monument had been truncated by a medieval furrow. During the removal of the furrow the truncated remains of a single pit were discovered. The pit was 1.23m in diameter and only 0.22m of the feature and has been truncated by at least 0.28m. No finds were recovered, however, the pit does indicate activity within the enclosure and that other remains may survive.

5.4.3 Northern Cursus. >98m long by 66m wide. North-south orientation. (Figure 3)

5.4.3.1 Trenches 8 and 10 cut across the ditches of the northern cursus and extend into the enclosed area defined by these ditches. The western ditch of the enclosure was not recognised within Trench 10, however, it is likely that this ditch has been truncated and disguised by a medieval furrow which cuts across at the point where the trench should have intersected with the cursus ditch. On the eastern side of the cursus, in Trench 17, a single segment was excavated through the boundary ditch (Figure 6, section 23). The excavated segment indicated that the ditch was U-shaped with gradual sloping sides which are slightly concave, indicative of erosion from being left open over a long period.
of time. The base is concave with no distinct break of slope. The ditch [76] was 1.45m in width and 0.57m in depth and filled with yellow brown silty sands and sandy silts with a gravel component which increases from 3% to 20% towards the base. At the base lies a virtually stone less deposit composed of sandy silts of up to 0.40m in depth which indicates a period of gradual infilling prior to the input of a gravel deposit which occurs solely on the eastern side of the feature. This may indicate that a bank existed on the outside of the cursus which was deliberately deposited into the ditch after the first phase of infilling. The section suggests that the erosion of the bank was rapid as the first infilling phase continues during the deposition of the bank into the ditch. This may indicate that the rapid infilling was intentional and related to an episode of levelling within the prehistoric landscape. However, as the majority of the sediment in the profile is directed from the eastern side of the ditch it is equally possible that this deposit represents more than one phase of ditch infilling.

5.4.3.2 In comparison two segments through the ditches of this cursus have been excavated previously (Macaulay 1994). These revealed a U-shape ditch 1.10m in width, 0.23m and 0.29m in depth (Macaulay 1994). No evidence for a gravel bank was recorded and no finds were recovered. Although depth and width of the segments excavated in 1994 and 1997 vary the association of these two features is confirmed by their relative positions with the Roman trackway ditches. In addition, if the cursus ditch had suffered greater truncation to the north of the development area the observed width and morphology of the feature would have been affected. It may therefore be unsurprising to learn that if only the lower 0.30m of [76] had survived the ditch would be 1.02m in width, compared with 1.10m in the 1994 excavations. This presumed truncation would also have resulted in the removal of any gravel deposits from the ditch segments excavated by Macaulay. The bank which ran along the outside of the monument may therefore have either been continuous or interrupted.

5.4.3.3 Apart from the presence of the ditches and medieval furrows no other archaeological features were recorded as lying internal to the cursus. Geophysical survey was used to assess for the presence of pits, post-holes etc. within the enclosed area, however, no features were recognised. The survey also failed to recognise the southern extent of the cursus ditch, the entrance way which was located in this area, or the north-south trackway which ran through the survey area. It is clear that the geophysical survey was not receptive to the archaeological features present within the survey area.

5.4.3.4 Fieldwalking finds from the area included the two undiagnostic flints mentioned in the discussion on the long barrow. No finds were found within the cursus ditch segment excavated during the course of this work or during the 1994 excavation.

5.4.4 Central Cursus. 314m long by 80m wide. North northeast- south southwest orientation. (Figure 4)

5.4.4.1 Trenches 18, 24, 25, 26, 27 and 72 cut across the presumed boundary of the cursus monument. All of these trenches apart from Trench 27 contain a ditch in the appropriate position to be interpreted as this cursus ditch, although there is apparently a displacement of about two metres between the cropmarks and the evidence within the trenches. This displacement leads to some confusion in Trench 18 as another ditch was found within 2m of the ditch interpreted as the cursus ditch, however, a mean error of 2m for cropmarks computer–rectified from air photographs is perfectly normal. It is perhaps surprising that there is not a greater margin of error as the large field has a paucity of good control points within which the rectification programme can comfortably operate.
Figure 4 Central cursus and pit alignment
5.4.4.2 The size and shape of the excavated ditch within Trench 18 as well as the fill types are consistent with this being the cursus ditch. The excavated segment is 1.29m in width at the junction with the gravels and 0.37 in depth (Figure 6, section 17). The ditch was filled with dark yellowish brown sandy clayey silts with 5% gravels increasing to 15% towards the base.

5.4.4.3 Surprisingly the eastern side of the cursus monument was not present within Trench 27 although clearly visible on the cropmarks. The presence of a ditch within Trench 25 lies on the same alignment as the eastern cursus ditch shown on the cropmark suggesting that the cursus survives in areas where it was not actually visible on the aerial photographs. Geophysical survey was undertaken across the northern end of the cursus, but, unfortunately no archaeology was recognised by this technique even though the cursus ditch which runs into the surveyed area was visible in Trench 18.

5.4.4.4 Over 350m of linear trenching cover the internal area of this cursus. Within these trenches the majority of features represent later trackways which cut across the monument. Other features include pits associated with the pit alignment and other ditches visible in the cropmarks. Ten features were recognised within these trenches which were not visible on the cropmark plot or did not represent the remains of medieval cultivation. These features included a single small pit and a series of east-west aligned narrow ditches which although undated could be comparable with the field system ditches identified during the Tesco's excavation and ditches within Trench 29 (Kemp 1997).

5.4.4.5 A single flint flake was recovered from segment [45]. Within the bounds of the cursus monument an additional three flint flakes and two scrapers have been found. Given the presence of other features in the area none of these can be related directly to the use of the monument.

5.4.5 Southern Cursus. >132m in length and 52m wide. East-west orientation. (Figure 2)

5.4.5.1 The cropmarks suggest the presence of a southern cursus which extends east-west towards the river. As there is no evidence for the continuation of the monument on the other side of the river or for any major movement in the course of the river to erode this monument it is probable that the intersection of the river and monument was intentional. Therefore the monument has probably never been more than 132m in length. The possible relationship of the monument boundary ditches with the river also offered high environmental potential.

5.4.5.2 Trench locations were restricted due to the presence of electricity pylons in the area, and those that were opened found only disturbed ground. The monument has been removed by borrow pitting during the construction of the A428, and the northern boundary ditch to the cursus is the only surviving part of the monument as it lies to the north of the area of disturbance which is demarcated by an east-west ridge which lies 70m north of the road embankment. It was not possible to gain access to this northern ditch because of the electricity pylons.

5.4.6 Ring Ditch. 16m diameter. (Figure 5)

5.4.6.1 Trench 29 runs north-south over a ring ditch recorded on aerial photographs. Excavation shows that the ring ditch is interrupted on the northern side of the monument by an entranceway. Trench 29 is T-shaped with the east-west arm exposing the pit alignment which runs immediately to the northern side of the ring ditch.
Figure 5 Ring ditch and pit alignment

5.4.6.2 A single segment was excavated on the southern side of the ring ditch. The ditch was 0.48m in depth and 1.60m in width at its junction with the natural sands and gravels (Figure 6, section 5). The feature can be recognised in section within the overlying disturbed sediments, however it is difficult to define the exact size of the feature at this point. The ditch is filled with yellow brown silty sands with occasional gravels and dark brown silty sands with frequent flint gravels which overlay a basal fill of yellowish brown sandy silts with occasional gravels. The intermediate layer with frequent gravels was only 60mm in depth and spreads across the whole width of the feature suggesting that if a delineating bank or barrow mound was associated with this monument it was not substantial, although the presence of gravels within the basal fill could indicate long term weathering of these former earthworks.

5.4.6.3 At least four post-holes lay within the ring ditch and are possibly associated with the use of this monument and possibly the remnants of structural remains associated with a barrow. A similar sized interrupted ring ditch was evaluated as part of the archaeological work at Tesco's superstore (Kemp 1994). This was 15m in diameter and the ditch survived to a maximum depth of 0.25m. Post-hole features were found within this monument. Unfortunately this ring ditch was also undated. The larger ring ditch excavated by Herne in 1984 lies 220m to the south of the ring ditch evaluated in 1997. This was 36m in diameter with a central barrow mound of 20m in diameter (Herne unpub.). Given the size of this monument it is hardly surprising that this ring ditch had a greater attraction for later populations than the smaller monuments being evaluated as part of the present scheme. This attraction was reflected in the presence of Saxon occupation and burial remains. The smaller ring ditches were obviously assumed as a lower order in the later prehistoric and historic landscapes although they were used a focus points for later trackway and field boundaries (Kemp 1997).
Figure 6 Sections of selected features
5.4.7 Pit and Ditch Alignment. Enclosure of over 420m in length by 178m in width. (Figures 3, 4 and 5)

5.4.7.1 The pit alignment was exposed within three trenches (Trenches 14, 27 and 29), whilst six other trenches cross the alignment but do not show any traces of pits (Trenches 17, 18, 19, 21, 25, 26). As the pits are generally small and set at over 1m apart it is possible that they were missed by some trenches, an alternative is that where they are crossed by our trenches they have been incorrectly identified. In two cases excavated features were interpreted as ditches prior to and during excavation as the termini of ditches which extended beyond the edge of the trenches. When the trenches were extended it became clear that these excavated features were the remains of pits. In a number of areas the pit alignment is intermittent or is related to a ditch alignment also seen in the cropmarks. The temporal relationship between the pits and these ditches was not investigated due to a lack of appropriate exposures within the trenches. However, minor ditches on similar alignments to the pit alignment were discovered in Trenches 26 and 29 they were found to date to the late Iron Age.

5.4.7.2 The majority of pit excavation occurred within Trench 29 (Figure 5). Here three of the nine pits visible within the trench were excavated (Figure 6, sections 8 and 10). It is likely that a further six pits lay between pit [30] and the eastern end of the trench, however, these could not be accurately defined due to the proximity of the side of the trench to the alignment and as they are cut by a late Iron Age ditch. The excavated pits varied greatly in form. Feature [23] which was on the western side of the trench was a large post-hole with gravel packing along one side of the feature. This post-hole was 1.4m in diameter and 0.71m in depth and was filled with yellowish brown silty sands with gravels. Two sherds of Iron Age pottery and two flint flakes were found in the upper fill of the feature. Pit [20] was 1.55m in width and 0.62m in depth with a broad U-shaped profile. This pit was filled with dark yellowish brown sandy silts with a high flint gravel component. Iron Age pottery was also found within this pit. Pit [30] was slightly more sub-rectangular in shape than the previous pits which were round/sub-round in form, however, this pit was also a broad U-shape in profile. The upper fill to the pit was a yellowish brown silty sand with frequent flint gravels, whilst the basal fills were dark greyish brown in colour with fewer gravels present.

5.4.7.3 Another pit was excavated in Trench 27. This was clearly part of the eastern alignment of pits as two other pits were found during the widening of the trench. It is 1.45m in diameter and 0.80m in depth, steep-sided with a flat base. The feature filled with dark yellow brown sandy silts with about 10% gravels. This feature resembled feature [23] found in Trench 29 and may be another posthole.

5.4.7.4 One of the three pits which represent part of the western alignment exposed in Trench 14 was excavated. Pit [64] was 1.16m in diameter and 0.72m in depth and a slight V-shaped base with concave edges (Figure 6, section 19). This pit was filled with a dark yellowish brown sandy clayey silt with <5% gravels. This feature was overlain by about 0.30m of silty clay alluvium and cuts through a sandier alluvium. One sherd of Iron Age pottery was found within this pit.

5.4.7.5 Excavations have shown that the alignment consisted of a combination of pits and posts which acted as markers within the Iron Age landscape. In Trenches 27 and 29 the pit alignment was found to be cut by a late Iron Age gully which runs on approximately the same alignment. These gullies were about 0.50m in width and 0.30m in depth and filled with brown silty sands. It is possible that
these are the ditches represented as cropmarks which replaced the existing pit alignment. However, similar sized features elsewhere in the excavation area are not visible on the aerial photographic plot.

5.4.8 Pits (Figure 3)

5.4.8.1 Two large pits were exposed in Trench 14. The most completely exposed pit was 4m long by 3m wide. The other ([84]), which was partially excavated was 4.63m in diameter and 0.84m in depth. The feature was filled with olive brown silty clays and sandy silty clays with up to 15% gravels. Late Bronze Age /early Iron Age pottery, animal bones and the occasional burnt sandstone rock were present. These features were found to be overlain by the sandy alluvium contained within the palaeochannels.

5.4.8.2 Four small pits were visible within Trench 14, one of which was excavated. This feature was sub-ovate in plan with steep sides and a concave base. The pit was 0.52m in diameter and 0.16m in depth and filled with very dark grey sands and silts and with up to 50% gravels. Although no charcoal was present and none of the gravels were heat affected a number of very burnt fragile rib bones were found within the fill. The absence of other bone material within the feature would suggest that this is the burnt remains of some animal discarded from around a hearth. The feature itself was not burnt and is unlikely to have acted as a hearth. None of the other associated features contained any burnt remains at the surface.

5.4.9 Ditches

5.4.9.1 A small cropmark enclosure 5m across of probable prehistoric date was recognised in Trench 17 and on the eastern side of the Roman trackway. Dating is based on the enclosure ditch being cut by the north-south Roman trackway ditch [87]. Enclosure ditch [73] was over 1.20m wide and 0.50m in depth, the base being flat (Figure 6, section 25). This ditch was filled with yellowish brown sandy silts with over 3% gravel.

5.4.9.2 Another presumed prehistoric ditch [99] lies on the western side of the eastern ditch of the Roman trackway. This prehistoric ditch runs north-south and was recut by the Roman ditch. Ditch [99] is over 1.40m in width and 0.45m in depth and filled with brown sandy silts with 1% gravels (Figure 13).

5.4.10 Flint Scatter (Figure 2)

5.4.10.1 The flint scatter was excavated as described in the methodology. All of the flint artefacts were found within the topsoil. These were largely undiagnostic flint flakes. Reynolds suggested that most of the original field collection was of a late Mesolithic or early Neolithic date. The test-pits were expanded by machine excavation in order to identify any associated features. None were present, it is therefore likely that the landsurface associated with this flint scatter has been incorporated into the topsoil and no associated remains survive in the area.

5.5 Roman

5.5.1 The only Romano-British features present within the development area comprise of ditches. A pair of Romano-British ditches run east-west and parallel with the pit alignment in Trench 29. Ditch [17] is 1.06m wide and 0.42m in depth and has shallow concave sides and base whilst [19] is 0.78m wide and 0.32 in depth with steeper sides and flat base. A sherd of pottery dated to the Roman period was recovered from ditch [19].
5.5.2 Trench 26 cuts across the location of the south-east to north-west orientated Romano-British trackway. Although no finds were recovered during this phase of work, a Roman date for this trackway was established when Roman pottery was found in an excavated segment of the trackway in 1993 (Kemp 1993). These parallel boundary ditches terminated within the trench prior to joining up with the north-south Romano-British trackway. One of the terminals was excavated, the other was exposed during the second stage of trenching prior to backfilling. The excavated Romano-British ditch was 1.13m wide and 0.12m in depth terminating 2m into the trench and was filled with yellow brown sands with occasional gravels.

5.5.3 The north-south trackway was identified in Trenches 8, 17, 18, 25 and 26. However, it was absent from Trenches 27 and 31. Ditch segments were excavated across the eastern Roman ditch in Trenches 17, 25 and 26. In Trench 17 the north-south trackway ([87]) cuts through two prehistoric ditches (Figure 13). [87] is an almost vertical sided, with a steeply concave based ditch of 1.20m in width and 0.80m in depth. This ditch is filled with yellow brown sandy silts with up to 25% gravels. In Trench 25 the ditch is 1.04m in width and 0.38m in depth and is recorded as being cut through an earlier ditch of 2.48m in width and the same depth. The ditch was filled with brown sandy silts. In Trench 26 the ditch was 1.33m wide and only 0.41m in depth. Here the ditch is filled with yellow brown silty sands.

5.5.4 Excavations in 1994 by AFU indicate that the eastern boundary ditch was 1.3m wide and 0.80m in depth whilst the western ditch was recut and has a width of 2.04m in width and 0.65m in depth according to the report drawing (the report text suggest a width of 1.55m) (Macaulay 1994). The cropmarks indicate that the trackway should be 18m wide and not 5m suggested by the 1994 excavations. This issue highlights the difficulty in correlating features within linear trenches and also the incomplete cropmark record. In this case substantial intercutting ditches are not recorded on the aerial photographs. Trench excavation elsewhere is reasonably consistent with the cropmark results with only smaller pits and ditches proving to be absent.

5.5.5 The sinuous course of the trackway is not typical of the Roman period and the few pieces of Roman pottery recovered from the boundary ditch could easily be residual, in turn medieval baulks are not commonly bounded by parallel ditches, unless the baulk overlay a former droveway which may be consistent with width of the trackway. This feature is therefore thought to be long lived existing within the Roman, medieval and post-medieval landscapes, as a method of access to agricultural fields.

5.6 Anglo-Saxon

5.6.1 A single ditch can be dated to the Anglo-Saxon period. A sherd of early/middle Saxon pottery was found in ditch [117] Trench 32. This was an east-west aligned ditch of 1.10m in width, 0.17m in depth and filled with a sandy silt with 10% gravels (118).

5.6.2 The ditch lies 150m to the north of the ring ditch excavated by Herne in 1994. Anglo-Saxon burials were found in association with this Bronze Age burial monument. Unsurprisingly the archaeological evidence indicates that the Anglo-Saxon population represented by the burials were active in the wider landscape. No archaeological other features within the development area can be accurately dated to this period. The evidence suggests a continuation of the use of the area for agricultural purposes, and it is possible that at about this time the formal strip cultivation field system was imposed on the landscape.
5.7 Medieval/post-Medieval

5.7.1 The medieval and post-medieval remains within the development area consist of east-west orientated furrows which are visible in the majority of trenches. The field system was divided by a north-south baulk which appears to have formerly existed as a Roman trackway.

5.8 Modern

5.8.1 Modern features consist largely of land drains which run throughout the development area. A pipeline runs east-west through the site to the pumping station in the south-western corner of the site. The infilled feature associated with this pipe was found in Trench 32 and occurs as a ridge running across the field (Figure 2). Other cut features include a series of narrow trenches infilled with modern soil in Trench 12 which are assumed to be associated with the market gardening mentioned by Macaulay (Macaulay 1994:3).

5.8.2 The area of particularly deep soil recorded on the aerial photographs on the southern side of the western infilled channel was an area of modern disturbance which penetrates to a depth of 1.05m.

5.8.3 70 m north of the A428 lies an irregular east-west ridge which is presumed to be modern. To the south of the ridge all of the trenches revealed disturbed ground where earlier borrow pits have been infilled (Figure 2). The ridge would appear to represent the northern boundary to this area of disturbance. All of the archaeology to the south of the ridge has been destroyed.

5.9 Undated

5.9.1 A number of undated smaller ditches and small pits lie within the development area. Ditches occur throughout the area whilst pits appear to occur largely around Trenches 16 and 18, however, some of these although appearing to be archaeological on examination proved to be tree root features. All of the features west of Trench 19, 20 and 70 proved to be natural. None of the natural features are shown on any of the report illustrations.

5.9.2 The presence of all presumed or dubious archaeological features were recorded along with a basic sediment description which could be compared with the more detailed descriptions made for excavated features. However, it proved that little phasing could be undertaken by this method due to similarities in soil colour and sediments infilling features of all periods. The only features which were clearly divisible were those that were obviously modern and contained a topsoil component and those with very sandy fills which were natural.

5.10 Finds

5.10.1 Lithics

5.10.1.1 During these excavations seventeen flint artefacts were recovered from the topsoil making a total topsoil collection of 119, or approximately 3 per ha. Only 3 flint artefacts were recovered during test-pit excavation, all of these came from the topsoil. Eighteen other flakes were recovered from excavated features. At least 7 of the 18 artefacts from excavated contexts are residual and were recovered from Roman contexts.

5.10.1.2 The general excavated assemblage has a combination of long and short flake attributes with very little preparation. Of the 35 artefacts collected only 3 formal tools were present; a Neolithic piece, an end scraper on a natural flake
and a side-end scraper. Both Neolithic, Bronze Age elements are represented in the assemblage. A number of flint flakes occur within Iron Age contexts and may relate to this period of activity.

5.10.1.3 The original fieldwalking recovered a large number of blades and bladelets (Reynolds 1996). Apart from two snapped blades this component was largely absent from the excavated assemblage. It would appear that the Late Mesolithic and Early Neolithic lithic component is not related to the archaeology cut in to the gravels. These results would support other findings which suggest that the prehistoric monumental and boundary remains are a combination of Neolithic, Bronze Age and Iron Age activity.

5.10.2 Pottery

5.10.2.1 The pottery assessment for Eynesbury was undertaken by Dr. J. Last. The detailed assessment can be found in Appendix A.

5.10.2.3 Bronze Age, Iron Age, Roman and Saxon pottery was recovered during the course of these excavations. The pottery tends to confirm an Iron Age date for the pit/ post alignment. A surprisingly large collection (40 sherds) of Late Bronze Age/ early Iron Age pottery was recovered from pit 84 in Trench 14, the date may indicate an association with the pit alignment, whilst the quantity of finds may suggest settlement debris. Late Roman and late Iron Age pottery was recovered from the east-west ditches ([17] and [19]) in Trench 29. A sherd of early or middle Saxon pottery was found within Trench 32.

5.10.3 Metalwork

5.10.3.1 The majority of metal artefacts found during the metal detector survey date to the 18th, 19th and 20th centuries. A 16-17th century bell and buckle were found in the southern field as was a 2-3rd century Roman coin. A second century Roman coin was also found in the northern field. Surprisingly no Roman finds were discovered in the field to the west of the artificial football pitch even though the field lies in proximity to the Roman site at Eynesbury School.

5.11 Environment

5.11.1 The environmental assessment was undertaken by D. Schlee. The detailed assessment can be found in Appendix B

5.11.2 Of the eleven samples taken for flotation six were processed to assess the potential of the prehistoric pit and ditch fills. Apart from the occasional small charcoal fragments little of significance was recovered. This may be the result of the absence of prehistoric settlement within the development site as well as the acidic, leached sandy deposits generally contained within shallow ditches, conditions which are not be favourable for the preservation of organic remains.

6 CONCLUSIONS

6.1 The results of the excavation have shown an area with ceremonial prehistoric activities, and agricultural use in the historic periods.

6.2 The evaluation has not looked for Palaeolithic remains which potentially could lie within the gravels. Construction of the lakes and moorings will need to be
monitored in case these remains exist at a depth within the Terrace gravels. *In situ* archaeology of this date is rare as such riverside sites are often disturbed as rivers alter their course overtime. As a result the archaeology may be eroded and redeposited away from its primary location.

6.3 The earliest archaeology recovered as part of the present study into the area is of Late Mesolithic and/or early Neolithic and consists solely of lithics found during fieldwalking and test-pit excavation. Where these artefacts have been found they are likely to have been deposited on land surfaces which have since been incorporated into the topsoil. This is clearly the case around TL17975842 where the main artefact concentration located by fieldwalking and evaluated by hand dug test-pits can be shown to exist entirely within the topsoil. No evidence for settlement as such exists for this period, however, it is common for activity areas of this and earlier periods to be solely represented by flint scatters.

6.4 Subject to our comments in paras. 6.5 and 6.6 it is likely that the cursus monuments are of late Neolithic date, whilst the long barrow could be early or middle Neolithic, although, no positive proof of such has been recovered from these features. The cursus monuments seem to show considerable variation in form. The northern cursus shows variations in cut depth and evidence for an external bank which may be intermittent.

6.5 The presumed southern cursus could not be evaluated due to the presence of electricity pylons and that much of the monument was destroyed during earlier episodes of gravel extraction. This southern cursus was only 132m in length, it is always possible that this ditch system with entranceway actually defined a prehistoric field or other enclosure rather than a cursus.

6.6 In addition it is surprising to find a Neolithic long barrow enclosed by a cursus monument. Other than proving the existence of the long barrow enclosure ditch in the area, excavation of this monument was limited on the instructions of the County Archaeology Office. No internal remains were recognised and the ditch excavation provided few clues to the date or function of the monument.

6.7 It is apparent that our understanding of the Neolithic monuments within the development area largely derives from the evidence of the aerial photographs and that a more extensive programme of field work would be the only method which would add significantly to this evidence. The evaluation did however, show that the subsurface features of these monuments survived, although they are generally of shallow depth, poor in finds and lacking in environmental information.

6.8 The Bronze Age component can be more easily defined and appears to be more spatially restricted. Two ring ditches of similar size, which are presumed to represent the remains of barrows are situated in the south-east and south-western corners of the development area. Both have been shown to contain internal features which may be structural related to burial. Flint artefacts of this period are scattered widely across the development area at about 1.7 per ha. Only one flint artefact concentration was found and this proved to lie solely within the topsoil.

6.9 Late Bronze Age or Iron Age features include two large pits outside of the pit alignments found in Trench 14 which contain a large number of lightly burnt sandstone fragments and about 40 sherd of Iron Age pot. The presence of deposits of a domestic nature were unexpected and may indicate localised settlement or later ritual activity related to the use of the earlier monuments,
however, they do not resemble placed deposits. Again environmental evidence is absent from the excavated features.

6.10 The pit alignment is of Iron Age date and occurs as a combination of pit and post-holes. These may redefine an earlier apparently intermittent boundary defined by ditches. These features provide a boundary which cuts across the earlier prehistoric monuments, redefining the internal boundaries of this multi-period landscape.

6.11 The enclosure which lies to the west of the northern cursus may also be a component of one of these prehistoric landscapes. However, although two segments across the enclosure were excavated no dating evidence was recovered.

6.12 Settlement evidence for this period within the development area is not conclusive, although the evidence is suggestive of hearth side activities due to the presence of burnt flint and bone in addition to the presence of Bronze Age pottery. A number of smaller (possibly Bronze Age) pits are scattered through the development area, particularly in Trenches 16 and 18. The burnt sandstone fragments found in Trench 14 are unlikely to represent the remains of a substantial hearth, and as they are only lightly burnt and sandstone occurs within the natural gravels firing may have been fortuitous. Selection which has favoured these sandstone fragments and placed them in a position where they would be burnt has occurred.

6.13 The north-south trackway is known to be in existence in the post-medieval period as a baulk within the medieval field system. The baulk is marked on a map of the area dated 1757 (Way 1993). Macaulay suggests that the trackway is of a Roman date and links with a similar trackway recognised by Alexander in 1993 (Alexander 1993, Macaulay 1994).

6.14 The trackway to the south of Barford Road Farm and demarcated by a pair of parallel interrupted ditches has been more conclusively dated to the Roman period, although again this may have an earlier antecedent. The trackway runs from an Iron Age/Romano-British settlement westwards, and where excavated Roman pottery has been recovered from the ditch segments (Kemp 1993).

6.15 A number of other undated pits and linear ditches cross the development area which are not recognisable on the aerial photographs; presumably due to their narrow width and shallow depth. These and all other archaeological features do not extend beyond the first major palaeochannel to the west of the cursus monuments. It would appear that this channel provided a natural boundary to the prehistoric activities which was formalised when the pit alignment utilised the ridges which bound the channel. However, it is also apparent that the alignment cuts across the channel in a drier period, prior to the flooding which subsequently buried these boundary markers during the late Iron Age or Roman period.

6.16 The placement and survival of the monuments has been confirmed, however, except in the case of the pit alignments and trackways date and function is still based on the original aerial photographic interpretation which in the case of the southern cursus is ambiguous (Dr. J. Last pers. com.).

6.17 The evaluation recognised components of former landscapes which include ritual monuments and field systems. Although here were activity areas which include the knapping of flint artefacts and the deposition of pottery and small amounts of bone, there was no substantive evidence for settlement. The only occupation evidence for the area comes from the excavations undertaken by
Herne to the south of the development area. This site may have extended northwards into the development zone, however, and if so this settlement has been destroyed. The evidence for prehistoric agriculture and ritual monuments in this area, now lying beneath the A428, once again reminds us of both the absence of Bronze Age settlement and the ephemeral nature of earlier settlements and activity areas. The evidence therefore suggests that the landscapes of individual prehistoric periods are incomplete because they extended beyond the development area and the boundaries to these landscapes are unknown.

6.18 The above report has shown the success of the archaeological methodology in assessing the survival of the archaeology recorded on the aerial photographs and recognising additional archaeological remains. The evaluations have also been successful in defining the spatial extent of the archaeological record. However, this work has been less conclusive in its aims of defining a date for the monuments due to a paucity of finds throughout the site. Linear trenching whilst providing access to the archaeological features is limited in providing an extensive understanding of the function and development of the landscape. This problem was to be resolved by the use of geomagnetic survey, but unfortunately this technique provided no investigative value and was abandoned after Stage 1 of the analysis. Existing trenches were expanded in order try and resolve this problem.

6.19 This piece of archaeological work has conclusively shown that the existing development scheme will have some impact on the archaeological resource surviving within the development area. However, the impact will obviously vary across the site dependent on the nature of the archaeology and the development in individual areas.

ACKNOWLEDGEMENTS

The author wishes to thank:

John Phillips of Phillips Planning Services, Bedford and the Trustees of the Banks Family Settlement for their assistance during the course of the archaeological evaluation and for funding this project.

Louise Austin, Development Control Officer at the County Archaeology Officer, Cambridgeshire County Council for her advice prior to and during the fieldwork.

The Staff of the Archaeological Field Unit; particularly Tim Malim the Project Manager, Dr Jon Last (Prehistoric Pottery Specialist), Duncan Schlee (Environmental Officer) and Chris Montague (metalwork) whose specialist knowledge was much appreciated. The field team of Emily Burton, Spencer Cooper, Sean Damant, Scott Kenney, Chris Montague, Judith Roberts without whom so much data would not have been collected. I hope they all make a full recovery.

Finally I would like to thank all those who helped with the production of the report; in addition to those mentioned above, thank you to Jon Cane, Carole Fletcher and Caroline Gait for producing the illustrations.

23
BIBLIOGRAPHY

Appendix A

Pottery from Barford Road, Eynesbury

by Dr. Jonathan Last

The evaluation at Barford Road Farm, Eynesbury produced ceramics from just 12 contexts, excluding unstratified material. These fall into 6 groups:

1) North-south ditched trackway.
 This is considered Roman or later on the basis of pottery recovered by Macaulay in 1994. However it clearly respects alignments of greater antiquity followed by the ditches of the northerly cursus and the pit alignments to the west. Only two sherds came from the 1997 excavations: from the eastern ditch in Trench 25 (context 61) and the western ditch in Trench 26 (context 32). Both sherds are handmade and grog-tempered. They are probably Bronze Age and, given their size and abrasion, most likely residual. It is not impossible, however, that the ditches have prehistoric origins: in both cases the potsherds came from the earlier cut of the feature.

2) East-west ditch.
 This runs through Trench 32 on a different alignment to all other features. A single sherd of early or middle Saxon vegetable-tempered pottery came from fill 117. Saxon burials were discovered by Herne in 1984, cut into a Bronze Age barrow some 150m to the south.

3) Ditches and gully in Trench 29.
 Cuts 17 and 19 are interpreted as a pair of Romano-British ditches which run parallel with the pit alignment. In fact they produced both late Roman pottery (fill 18 of ditch 19) and later Iron Age flint and sand tempered sherds (fill 16 of ditch 17). Fill 14 of the nearby gully (15) produced a single sherd of late Iron Age sandy ware.

4) Pits and post-holes in Trench 29.
 The remaining features in this trench were associated with the east-west pit alignment. Boundaries of this sort are usually Iron Age in origin and the excavated features here tend to confirm such a date. Fill 21 of pit 20 produced a small body sherd in an unoxidised fabric with coarse grog temper. Although the fabric is quite hard the presence of grog suggests a Bronze Age date for this piece; it could of course be residual. Fill 11 of posthole 23 yielded two sherds, one in a sandy fabric and the other vesicular, probably indicative of dissolved shell temper. A later Iron Age date seems most likely. Finally, fill 29 of pit 30 produced three sherds in Iron Age sandy fabrics, two of which join while the other perhaps has traces of faint scoring on the exterior surface. One flint-gritted sherd was also found, as well as an undecorated, upright rim with a T-profile in a greyish fabric with dissolved shell temper and a little sand. This is a somewhat unusual form: the heavy rim suggests it could be early Neolithic (plain bowl) but an Iron Age date is possible and seems more likely here, despite the problems of residuality.

5) Pit in Trench 27
 Feature 81 in Trench 27 produced a single small body sherd in the Iron Age sandy fabric. The feature forms part of the east side of the enclosure defined by the pit alignments.

6) Pits in Trench 14.
 Two of the features excavated here produced pottery. The first was fill 65 of pit 64, which forms part of the westerly pit alignment that probably represents the same landscape feature as the pits in Trenches 29 and 27. This deposit yielded a single body sherd in a flint-gritted fabric of prehistoric date. The second feature was the large pit 84...
which lay outside the alignment. Its fill (85) was the most productive context for pottery on the site, with perhaps 35 to 40 sherds (there are more fragments but many show fresh breaks, some of which have been refitted). It was also possible to refit one or two old breaks, suggesting a certain integrity to the assemblage. In terms of fabrics the majority of sherds are tempered with sparse but very coarse crushed flint and have oxidised exteriors. There are also a number of sherds with inclusions of grey or brown grog and a few vesicular pieces perhaps indicative of dissolved shell. Typologically the assemblage is characterised by plain bowls or jars with flattened, everted rims, slight shoulder carinations and small pinched bases.

These shapes and the predominance of gritty rather than sandy fabrics suggest a late Bronze Age/early Iron Age date with the lack of decoration and of fine surface treatments making the former (Barrett's post-Deverel Rimbury plain ware) more likely. While the presence of a single relatively hard, sandy sherd could indicate the whole group is rather later (middle Iron Age) the lack of true upright rims and the use of grog in some of the vessels does not fit the usual typology for this period. The latter is unusual also for the late Bronze Age, but might be the remnant of an earlier tradition. Minimally, the assemblage from 85 can be dated somewhere in the 1st millennium BC.
Appendix B

Assessment Of Potential For Environmental Samples.

by Duncan Schlee B.A M.Sc

A site visit was made during the evaluation excavation to assess the potential of the site for offering useful environmental data relating to the archaeological features. The soil was dry, sandy and gravelly, and appeared sterile, leached and homogenous in the majority of excavated features. The conditions did not look promising for the preservation of charred or waterlogged seeds or pollen. The homogeneous nature of the deposits and lack of suitable deposits, suggested micromorphological analysis would also not be worthwhile. It was suggested that a few samples be taken from any features thought to be significant, or appearing to contain organic material.

Eleven soil samples were taken for the recovery of charred plant remains. These varied in volume from 10 to 20 litres. Of these, six were selected for processing to assess their potential. In the light of the results from the processed samples (see below) the remaining samples were discarded.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Context</th>
<th>Feature</th>
<th>Trench</th>
<th>Context type</th>
<th>Context Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65</td>
<td>[64]</td>
<td>14</td>
<td>Pit fill</td>
<td>Iron Age pit alignment</td>
</tr>
<tr>
<td>2</td>
<td>69</td>
<td>[71]</td>
<td>9</td>
<td>Ditch fill</td>
<td>Long barrow</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>[94]</td>
<td>16</td>
<td>Pit fill</td>
<td>Pit containing burnt bone</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>[84]</td>
<td>14</td>
<td>Pit fill</td>
<td>Iron Age pit</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>[23]</td>
<td>29</td>
<td>Post pit fill</td>
<td>Iron Age pit alignment</td>
</tr>
<tr>
<td>11</td>
<td>81</td>
<td>[81]</td>
<td>27</td>
<td>Ditch fill</td>
<td>Iron Age pit alignment</td>
</tr>
</tbody>
</table>

Results

Sample
1 Occasional small charcoal fragments and mollusc shells.
2 Sterile.
3 Frequent burnt bone fragments and charcoal fragments. No charred seeds were recovered, but fragments of roots, twigs were present.
4 Sterile.
10 Occasional small charcoal fragments.
11 Sterile.

Potential

From the samples taken it appears there is little potential for the recovery of useful environmental data from the deposits encountered during the evaluation. If further archaeological investigations were to occur, no large scale sampling would appear necessary. Bearing in mind the nature of the archaeology (a landscape that has undergone several changes in use and character, containing large monuments and field systems defined by ditches) bulk sampling for charred remains is unlikely to provide useful information. If, however, suitable deposits are encountered, samples should be taken to enable the various different periods and changes of land use to be placed in their environmental context.