Weybridge Farm Alconbury: An Archaeological Desktop Survey

Tim Malim

1994

Cambridgeshire County Council
Report No. A39

Commissioned By Mineral Resources Ltd.
Weybridge Farm Alconbury:
An Archaeological Desktop Survey
TL 180720

Author Tim Malim

1994

Report No A39

Archaeological Field Unit
Cambridgeshire County Council
Fulbourn Community Centre
Haggis Gap, Fulbourn
Cambridgeshire CB2 5HD
Tel (0223) 881614
Fax (0223) 880946
Weybridge Farm, Alconbury: an Archaeological Desktop Survey

Summary
Archaeological evidence shows a rich and diverse landscape to the east of the application area along the terraces of the Ouse, and limited late occupation to the west, north and south, but with no direct evidence in the immediate vicinity. Historical and cartographic evidence suggests that the application area was given over to meadowland beside Ellington Brook, and probably formed part of the Royal Forest of Weybridge during Medieval times. Geological and soil conditions show considerable river activity in the application area, with sand and gravel deposition during the Pleistocene and alluvial deposition in more recent times. The surrounding high lands are largely composed of clays that may not have been particularly suitable for human exploitation until Saxon/Medieval times.

CONTENTS

1. Introduction 1
2. Geology and recent sedimentary deposition 1
3. Topography and landuse 1
4. Archaeological background 1
5. Historical background 3
6. Cartographic information 3
7. Aerial Photographs 4
8. Site visit, auger survey and geological test-pits 5
9. Archaeological potential 7
10. Conclusions and recommendations
 Acknowledgements 9
 Bibliography 9

Appendix 1 Air photographs references 9
Appendix 2 Log of auger survey 10

FIGURES
1. Location map and areas of archaeological interest
2. Application area with test-pits, auger survey, depth of overburden & contours
3. Weybridge estate map 1672
4. Blaeu's map of Huntingdonshire 1646
5. Wabridge estate map 1845
1. Introduction
The site is centred at TL180720, and straddles the parish boundary between Alconbury and Ellington which follows the sinuous course of an extinct and filled-in stream (Fig. 1). Application has been made to extract gravel over a field of 33ha, and the present desktop study was commissioned by Mineral Resources Limited in order to ascertain the potential impact on the archaeological resource in response to a brief set by the County Archaeology Office.

2. Geology and recent sedimentary deposition

2.1 The underlying geology of the area is Jurassic Mudstone dating back millions of years. Pleistocene deposits include remnants of Boulder Clay and Glacial Gravel dating back 250,000 years and dissected by the present river system which led to the deposition of more recent gravels during the Devensian (BGS 1978; Kemp pers. comm.). Within the application area it is these second and first terrace river gravels which are to be extracted, and they are sealed by alluvium associated with a palaeochannel of the Ellington Brook dating to the Flandrian.

3. Topography and landuse

3.1 The area lies within the valley and flood plain of the Ellington Brook and is overlooked to north and south by east-west running ridges of high ground which rise up to 30m above the Brook.

3.2 The 33ha application area lies between 16 - 17m OD within the bounds of a single field which is flat, but with a slight knoll 1m high in its north central part (see Fig. 2). The southern boundary is the present Ellington Brook, whilst the boundaries to north and east are defined by water holding ditches. To the west the field terminates in a recently disused quarry.

3.3 At present the field has two crops with most of the area covered by a dense growth of chest-high rape, but with a small part in the southwest given over to a young crop of spring-sown rape.

4. Archaeological background (information from SMR unless otherwise cited) (See Fig. 1.)

4.1 Palaeolithic tools in fresh condition have been found on the Ouse Terraces near Brampton and Huntingdon, consisting of handaxes, scapers, notches and flakes of "Middle Palaeolithic type, but none are known from Ellington Brook or in the immediate proximity of the application area. Faunal remains of both warm (Ipswichian) and cold (Devensian) periods have also been found along the Ouse, but not yet in clear association with artefacts (Reynolds pers. comm.).

4.2 Neolithic and Bronze Age archaeology is concentrated to the east along the Ouse valley and its tributaries such as the Alconbury Brook. An extensive landscape of ceremonial/ritual monuments consisting of a cursus, henge(s), territorial boundary ditches and burial sites has been partially investigated northwest of Brampton (Malim 1990, Malim & Mitchell 1993, White 1969), whilst to the north of Alconbury Brook preliminary evidence suggests occupation and woodland clearance of the same period
(Welsh 1993). Closer to the application area there is nothing known of this age, although further to the west ring-ditches and flints noted at Easton can probably be attributed to the Bronze Age. The paucity of evidence for these periods along the Ellington Brook and along the ridges to north and south would strongly suggest that this area was not a routeway and was not extensively occupied during the Neolithic and Bronze Age, indeed it was probably heavily wooded, but also the possibility exists that this pattern may be more a reflection of differential collection of artefacts and unresponsive soils for air photography than a true indication of the density of activity.

4.3 Iron Age archaeology is similar in pattern to that described above with round-houses, occupation evidence and agricultural activities recorded northwest of Brampton (Malim & Mitchell 1993, Welsh 1993, White 1969), and further finds of domestic nature (pottery and bone) reported closer to the application area at gravel pits immediately northeast of Brampton Hut on the A1, in the tongue of land leading to the junction of Alconbury and Ellington Brooks. Finds further west are sparse and tend to occur where later Roman occupation is known. The pattern suggests settlement and farming on the easily tilled soils over river gravels, preference for settlement given to the slightly higher land such as that provided by raised gravel terraces, with advantage taken of the fertile floodplains for agriculture and grazing.

4.4 Roman archaeology is not dense in this area, although more finds from this period are recorded to the west, especially around Stow Longa, as well as a major area of agricultural processing close to Brampton in the same general location as earlier activity (Robinson 1991), and isolated finds are noted from gravel pits along the A1. Two Roman roads exist in the locality: Ermine Street running from Godmanchester to Water Newton, and a branch road heading towards Leicester from Alconbury (Fox 1923). However, these roads are 3kms to the north and have no direct relevance for the application area. There is no evidence to suggest a Roman route existed along the valley of the Ellington Brook.

4.5 No finds or sites of Saxon date are known from this area, although place-name evidence and Domesday clearly indicate Saxon occupation.

4.6 Medieval archaeology dominates the record, with several deserted/shrunken medieval villages (and sibling settlements), moated sites (probably of 13th-14th century date) and agricultural systems scattered to the north, west and south of the application area. To the east little medieval activity is apparent until the village of Brampton with its associated field systems. This pattern of archaeology is suggestive of expansion of settlement indicative of a rising population exploiting the land along the valley and either side of Ellington Brook, with a subsequent retraction due to a fall in population at a later date ---- probably attributable to the Black Death in the middle of the 14th century. However, historical data adds considerably to this picture.

4.7 Archaeological research within the locality has been limited: Fox (1923) includes it within his archaeology of the Cambridge Region but has little to say about the area except by showing it as largely wooded on his maps; J.R. Garrood undertook several small excavations at Weybridge Farm and in gravel pits beside the A1 during the 1920s finding Iron Age and Roman artefacts, investigated the terrace and earthworks associated with the farm, and contributed to the Victoria County History on the subject of archaeology within the locality; larger scale excavations were undertaken by D.A. White at Brampton in the 1960s of Beaker burials and Iron Age settlement; further gravel pit records of features with Iron Age pottery were made by Mark Alexander in 1985; Charles French conducted a desktop study and fieldwalking of the
application area in 1990; large-scale excavations of a Neolithic mortuary enclosure and a Roman farm at Brampton were undertaken by Malim and Robinson in 1990-91, and in 1992 evaluation excavation of Neolithic territorial boundary ditches and Iron Age settlement was carried out by Malim and Mitchell; Neolithic, Bronze Age and Iron Age sites were evaluated at Hutingdon Race Course in 1993 by Ken Welsh; an archaeological desktop study of Brampton Hut which identified the deserted medieval village of Harthay was conducted in 1994 by Simon Colicutt.

4.8 C. French's 1990 desktop study included the application area and the land east of it as far as the A1. He recorded a depth of 0.6-1m for clay alluvium over the area and attributed this to aggradation from early meanders of Ellington Brook stream system. Fieldwalking resulted in no finds which could have been due to masking effects such as the presence of a crop of winter wheat and also alluvial overburden.

4.9 During excavation of the existing quarry 1990-1993 the landowner, Mr. Turney, watched for archaeological finds but saw nothing.

5. Historical background (information from VCH unless otherwise cited)

5.1 Although no Anglo-Saxon charters are mentioned for the area (Hart 1966) placename evidence is Saxon in origin for the parishes of Alconbury (Aecenesburie), Ellington (Eltinte), and Brampton (E rantune), with meanings of Ælhmund's burh (stronghold), Eli's farm, and brier/bramble farm respectively (Mawer & Stenton 1926).

5.2 These names are all mentioned in Domesday, and Ellington contained one hide of waste which Darby (1971) describes as being part of the king's wood which was later assessed with the Forest of Weybridge. 60 acres of meadowland is recorded for Ellington and this is described by Darby as lying along the Brook; it is unclear where the meadow in Alconbury lay but some would have been found along its southern border continuing that from Ellington beside the Brook.

5.3 Weybridge is well documented from the 12th century with the name Wardeberg, Wauberge recorded meaning "wold-hill" or "forest-hill" (Mawer & Stenton 1926). It formed part of Huntingdonshire Forest which gave importance in the early Middle Ages to the royal manor of Brampton, and has been referred to since as "the royal forest of Weybridge". This forest extended across the boundaries of three parishes, Alconbury, Ellington and Brampton, and included the settlements of Sapley and Harthay, although the present Brampton Wood itself was separate. This forest passed through the stewardship of various families during the medieval period, and large parts were assarted over the years, leaving Weybridge as the remnant in post-medieval times (at one point under the wardenship of Olivier Cromwell) so that it ceased to be a forest by the end of the 17th century and remained as Weybridge Park belonging to the Dukes of Manchester until this century.

6. Cartographic information

6.1 The earliest maps are 17th century estate maps of Weybridge Park (1651 HRO PM/1/3b, 1672 PM/1/3b) which give the names of fields and show areas of woodland and meadow. They terminate in the north part of the application area and do not show
the area of the contemporary Ellington Brook, but refer to all the application area as meadowland (Fig. 3).

6.2 Wabrige Forest is clearly shown on two maps of Huntingdonshire by John Speed in 1610 and by Blaeu in 1646 (Fig. 4), but in both maps the forest finishes north of Ellington Brook, showing a space between it and the stream.

6.3 The Inclosure maps for Ellington (1774 HRO PM/2/4) and Alconbury (1791 PM/1/2) do little to help in this study. Ellington runs as far as the sinuous course of the old river, but for the first time shows the (presumably canalized) present course of Ellington Brook, and shows the land between was allotted to Rev. Grimes. Alconbury Inclosure excludes Weybridge Estate and the strip of land south of it.

6.4 The 1808 draft OS survey shows a different field pattern within and around the application area from earlier maps, but this may be erroneous as it is also different from an 1845 survey which resembles previous maps.

6.5 Wabridge Estate was surveyed in 1845 (HRO PM/1) for the Duke of Manchester which showed a similar pattern to that from 1672, but with different names given to the individual fields. This map again shows the estate terminating in the north of the application area leaving a space surrounding Ellington Brook entitled "Alconbury Parish" (Fig. 5).

6.5 The 1851 Tithe Apportionment map for Alconbury (HRO 2196/1) stops just north of the area so adds no further information.

6.6 The 1887 OS 25" shows a field pattern similar to the 1845 survey of Weybridge and also shows the old and new courses of Ellington Brook. A spring (see Fig. 2) and two ponds are visible in the north of the application area, supplying the northern most point of the old course of the stream with a water source.

6.7 The present OS 1:2500 shows little change from the original map, and still show features such as the old course of Ellington Brook and the field boundaries intruding into the north part of the application area, all of which have been removed to create a single field, approximately rectangular in shape (Fig. 2).

7. Aerial photographs

7.1 Air photographs with archaeological features appear infrequently on Cambridgeshire County Council's Sites and Monuments Record (SMR) for this locality. Most of what has been plotted is of medieval date and concerns agricultural field systems. A preliminary survey in 1975 sketch plotted all visible features from Cambridge University Committee for Aerial Photography (CUCAP) on to 1:10560 base maps; this programme of plotting was enhanced by reassessment and computer rectified plotting at 1:10000, 1:10560, and 1:2500 scales by Rog Palmer and assistants during the early 1980s, with the general SMR cover being supplied on a series of 1:10000 overlays; photographs belonging to the Royal Commission of Historical Monuments (RCHM) in their National Library of Air Photographs (NLAP) were examined, computer rectified and plotted during campaigns of work from 1988 - 1991
by Tim Malim, Janet Miller and Rog Palmer; a further update was supplied in 1992 by RCHM with a complete listing of all air photographs within Cambridgeshire by grid reference and mapped on to a county base map. In all these surveys no archaeological features were identified from air photographs for the application area or for land within a kilometer of it.

7.2 Further searches were conducted as part of the present study to CUCAP, NLAP, the OS (Peterborough office) and Huntingdon Record Office (HRO). No oblique air photographs exist but a number of vertical shots of the general area were found (see appendix 1).

7.3 The only archaeological features relating to the application area were observed on HRO Ellington 200a (RAF1945) and HRO 262 (BKS 1971) which showed faint traces of ridge and furrow cultivation within its north central area (see Fig. 1), revealed as parts of two furlongs which meet at right angles.

7.4 Topographically these same photographs show the gradual erosion of the extinct course of Ellington Brook as a physical feature as it wound its way through the application area. By 1988 this feature has disappeared but shows on the colour vertical survey conducted by CUCAP on behalf of the County Council as a sinuous yellow band (RC8KnBO147). On this survey the irregular and curving boundaries around groups of modern fields to the south of the A604 suggest the fossilised pattern from part of old woodland boundaries, which, although apparent on OS maps, have a more pronounced visual impact from the air photographs.

7.5 For archaeological purposes oblique photographs are most important to show earthworks or cropmarks clearly, taken at different times of the year under varied ground and crop conditions. The absence of any such photographs has resulted in the need to rely on what information can be gleaned from vertical surveys which are conducted at greater heights than most obliques, and therefore lack the detail and appropriate lighting conditions that archaeological air photography prefers. However, these overhead shots have a use in giving a general picture of the landscape and how it has changed over the past 50 years which help to enhance that same information contained within OS maps.

7.6 Geological and ground conditions are relatively unsympathetic to techniques of aerial survey within this area, contrasting to the high visibility achieved along the gravels of the Ouse. This poor receptivity is exacerbated by the masking effect of the deep alluvium beside the Ellington Brook.

8. Site visit, auger survey and geological test-pits

8.1 A visit to the site was conducted on 9th June 1994 during which observations were taken regarding the topography and landuse; constraints for future work; sections cleaned back and recorded along the face of the quarry, along the northern boundary ditch, and also one section at the Ellington Brook. This data was designed to supplement the existing information on depth of masking alluvium as revealed by geological test-pits excavated by Mineral Surveying Services. In addition a programme of augering using a Hiller auger was undertaken to fill in the extent of data from the northern part of the field.
8.2 The 33ha application area is composed of one large field bordered on three sides by water-filled drains, and on the west by a recently excavated and now redundant quarry. Most of the field has a rape crop c.1.5m high, but with a 20-30m corridor of scrubby growth immediately north of Ellington Brook, the southern boundary. A track allows access along the western edge, and the south-western corner of the field contains a continuation of a spring-sown rape crop planted in the field immediately south of the quarry.

8.3 The main access is by means of a steep descent along a track from Weybridge Lodge, but a second access would be possible by means of a good bridge which exists across Ellington Brook. This leads from a group of barns south of the application area that front on to the A604. Unfortunately this second route is under separate ownership and the dangers of turning off a busy A road would seem to prohibit use of this route.

8.4 The field is flat, lying at the base of the ridge to the north. No surface undulations were visible owing to the dense crop cover, apart from a slight rise which could be discerned in the area defined as being 1m higher by Mineral Surveying Services' contour survey (see Fig. 2). The landowner reported that the land is liable to flooding and can be very wet in winter.

8.5 Overhead electricity cables travel in a zigzag over the eastern side of the field.

8.6 The irregular outline and dumping of heavy clay against the quarry face hampered its examination. However, records were made of the quarry face (see Appendix 2) at approximately 50m intervals, and the best sequence was observed at 180m south from the northern boundary of the application area. This consisted of 0.25m of topsoil, above 0.75m of friable yellowish-brown silty clay with 10% pebbles, above 0.1m mid grey clay, above 0.2m of blocky mid grey-brown clay with very occasional pebbles, above sands and gravels. Transitions between layers were not sharp, and the sequence would suggest alluvial origin throughout with the lower layers representing permanently wet conditions until recent times (drying-out is probably attributable to the quarry). No lamintations were visible in the section making it impossible to identify discrete episodes of deposition, and it is surprising that mottling was not seen which would be expected from alluvium subject to seasonal wetting and drying-out. The Pleistocene deposits of sands and gravels were recorded by Dr Tim Reynolds. They are well stratified and result from fast flowing stream activity. (No in situ Pleistocene materials could be examined owing to the lining of the quarry side with blue-grey clay, and the observations noted above were from visible sections of upstanding islands within the quarry).

8.7 Cleaning of the face of the northern ditch was conducted at 100m intervals and was designed as an adjunct to the auger survey, allowing rapid examination of the stratigraphy and a clearer picture than that which can be obtained from boreholes. The general impression is of a 0.25m pughsoil capping 0.5m of homogenous alluvium which has a gradual transition of 0.1m on to sands and gravels. This is consistent with results obtained from the auger survey except that the depth of alluvium generally increases to the south, and the transition between this and sands and gravels increases to 0.25m (see appendix 2). A single section cleaned on the southern boundary at Ellington Brook reached underlying sands and gravels at 1.4m depth. These surveys and the depth of overburden are plotted on Figure 2.
8.8 No organic remains or wet deposits were encountered at any point, even though borehole E was designed to be adjacent to the approximate position of the old course of Ellington Brook. In addition no indication of the palaeochannel was visible from the contour survey conducted by Mineral Surveying Services.

9. Archaeological potential

9.1 Pleistocene sands and gravels indicate fast flowing stream activity, with some braiding being likely. *In situ* campsites would not be present in such deposits, but if islands existed within the braids these could possess camps. If such a site was encountered it would be of international importance as such camps reveal evidence for the westernmost range of human adaptation during the last glacial. Any major invasive development likely to affect the Pleistocene deposits should allow for the potential of Palaeolithic archaeology to be investigated and recorded.

9.2 There is no physical evidence for archaeological remains within the application area. Such evidence as exists from the locality closely surrounding it is largely of medieval or later date. However, the richness of prehistoric activity along the Ouse and its tributaries suggests that areas of hinterland, such as that around the application area, may have been utilised as well, but that the physical evidence has as yet gone undetected.

9.3 Old maps of the area and documentary sources suggest that this was an area of meadow alongside Ellington Brook, which was part of the Royal Forest of Weybridge during medieval times.

9.4 Extensive alluvial overburden up to a maximum of 1.4m deep has been identified testifying to the periodic flooding and general wetness of the area. However, no evidence for surviving waterlogged deposits has been found.

9.5 Alluvial cover could be masking earlier periods of archaeology, and marginal land beside rivers were often the preferred location for ritual purposes such as burial during prehistoric times.

10. Conclusions and recommendations

10.1 The impact of gravel extraction on the application area will entail the total destruction of any archaeological remains that may exist for the Palaeolithic within the sands and gravels themselves, or for later periods above the geological deposits.

10.2 Access for the new quarry has not been included in the present application, but this will approach along existing roads from the north until Weybridge Farm itself, from whence a new road will be cut downhill towards the quarry. Such a route might have an impact on the post-medieval terracing and other features associated with Weybridge Farm, but the exact nature of the proposal has not yet been defined.

10.3 Existence of the existing quarry to the west has been significantly responsible for the present de-watered state of the application area. The impact of further quarrying
will no doubt contribute to a lowering of the watertable in the surrounding fields, with a destructive effect on any existing waterlogged archaeological remains contained within them.

10.4 Although little evidence exists for archaeological remains within the application area the alluvial overburden, geological conditions and general paucity of archaeological knowledge for the locality precludes a definite dismissal of archaeological potential.

10.5 Non-intrusive techniques would appear to have a very limited scope in evaluation of the application area. Fieldwalking after harvest/ploughing in August/September would seem to have no merit over a deeply alluviated landscape.

10.6 Geophysical prospecting would be of limited use over such overburden, with neither magnetometer or resistivity a suitable technique. However, a survey of magnetic susceptibility would be a possible option and if undertaken samples should be taken on a 50m grid from the base of the alluvial layer (scheme of works suggested by *Geophysical Surveys of Bradford*). Another potential method of survey, by ground sensing radar, has a checkered history of success and has generally proved its worth only on known archaeological sites with plenty of highly responsive features.

10.7 Air photographic evidence is of indirect use in terms of landscape context rather than explicit identification of archaeological features associated with the application area (see sections 7.5, 7.6).

10.8 The old river channel may contain waterlogged deposits and thus prove a valuable record of past environmental conditions, but that value is lessened if there is no archaeological site associated; however, an auger transect across the old course of the Brook on a 10m grid, could possibly add useful data and could sample any organic deposits that might be encountered.

10.9 Part of the north of the field is slightly higher as shown by the recent contour survey, and by the field boundaries on maps curving around it; it was this area that was utilised for ridge and furrow cultivation in medieval or post-medieval times.

10.10 A scheme of intrusive evaluation combined with magnetic susceptibility survey may elucidate questions of archaeological and environmental concern (trenching through the old river channel and concentrating on the terrace/higher land immediately north of it) but on present evidence there seems to be little to justify such an approach. Similarly the alluvial overburden would be extremely unlikely to contain archaeological artefacts and thus test-pitting of the overburden would not seem to be appropriate.

10.11 The most cost effective approach would seem to involve an archaeological monitoring during stripping of the alluvium, and a review of the situation depending upon results, or a condition to excavate and record any remains that might emerge at such a time.
10.12 The disadvantages of the above suggestion is the possible discovery of important archaeological remains late in the programme of works.

Acknowledgements
This desktop study was helped by the assistance and information readily given by M. Bradford, B. Cushion, R. Desmond, C. French, C. Gait, C. King, S. Kemp, D. Mitchell, T. Reynolds, W. Turney, P. Saunders and the staff of Huntingdon Record Office.

Bibliography

Bigmore P 1979 The Bedfordshire and Huntingdonshire Landscape. Hodder & Stoughton
British Geological Survey 1978 Map 187
Darby HC 1971 The Domesday Geography of Eastern England. Cambridge
Fox C 1923 Archaeology of the Cambridge Region. Cambridge
Malim T & Mitchell D 1993 Neolithic ditches and Iron Age Settlement at Thrapston Road, Brampton. Cambridgeshire County Council Archaeological Report No 81
Mawer A & Stenton FM 1926 The Place-Names of Bedfordshire and Huntingdonshire. Cambridge
Robinson B 1991 Unpublished summary and archive of excavations at Meadowview Farm.
Sites and Monuments Record for Cambridgeshire Cambridgeshire County Council
Victoria County History of the County of Huntingdon 1926 Vol. 1; 1936 Vol.3

Appendix 1

The following list outlines the agencies searched for air photographs of the application area and surroundings up to 1km distance; all are vertical shots:

<table>
<thead>
<tr>
<th>Agency</th>
<th>Source</th>
<th>Date taken</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUCAP</td>
<td>CUCAP/CCC</td>
<td>26/8/1988</td>
<td>RC8 KN BO 146-8</td>
</tr>
<tr>
<td>NLAP</td>
<td>MOD</td>
<td>4/8/1950</td>
<td>1129 4002-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/1/1945</td>
<td>123 3007-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31/8/1954</td>
<td>1520 228-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19/9/1961</td>
<td>2040 73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27/5/1957</td>
<td>2521 80-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7/2/1952</td>
<td>3147 5062-3, 5084</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/8/1945</td>
<td>37 3390-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16/1/1947</td>
<td>549 1289-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/6/1968</td>
<td>11706 224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17/9/1966</td>
<td>4424 120-2, 153-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14/12/1979</td>
<td>7597 25-6, 32-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13/1/1980</td>
<td>7624 100-5,119, 140-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8/4/1976</td>
<td>9900 63-4</td>
</tr>
<tr>
<td>OS</td>
<td>None at Peterborough office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRO</td>
<td>RAF</td>
<td>10/8/1945</td>
<td>200a 3390-3</td>
</tr>
<tr>
<td></td>
<td>BKS</td>
<td>Spring 1971</td>
<td>262-4 647274-6</td>
</tr>
</tbody>
</table>
Appendix 2

Log of quarry face, ditch sides, and auger survey designed to enhance the information provided by geological test-pits:

Quarry face:

<table>
<thead>
<tr>
<th>Distance from northern boundary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100m south</td>
<td>0.45m homogenous overburden on to dumped blue/grey clay</td>
</tr>
<tr>
<td>150m south</td>
<td>Dumped blue/grey clay to 2m depth to watertable</td>
</tr>
<tr>
<td>180m south</td>
<td>0.25m topsoil</td>
</tr>
<tr>
<td></td>
<td>0.25-0.75m friable yellowish-brown silty clay with 10% pebbles</td>
</tr>
<tr>
<td></td>
<td>0.75-0.85m grey silty-clay</td>
</tr>
<tr>
<td></td>
<td>0.85-1.05m blocky mid grey-brown clay; occasional pebbles</td>
</tr>
<tr>
<td></td>
<td>1.05-1.4m sands and gravels to dumped deposit of blue/grey clay</td>
</tr>
</tbody>
</table>

South of this last point dumped deposits against the quarry face prevented access to stratified sequence

Ditch sides

<table>
<thead>
<tr>
<th>Boundary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern boundary</td>
<td>0.4m topsoil</td>
</tr>
<tr>
<td>Ellington Brook</td>
<td>0.4-1.4m yellowish brown silty clay</td>
</tr>
<tr>
<td></td>
<td>1.4-2m sands and gravels to watertable</td>
</tr>
</tbody>
</table>

Northern boundary

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.25m topsoil</td>
</tr>
<tr>
<td></td>
<td>0.25-1.3m homogenous yellow-brown silty clay</td>
</tr>
<tr>
<td></td>
<td>Boulder clay with very thin band of sands and gravels</td>
</tr>
<tr>
<td>C</td>
<td>0.4m topsoil</td>
</tr>
<tr>
<td>F</td>
<td>0.4-0.9m yellow-brown silty clay on to Boulder clay</td>
</tr>
<tr>
<td>H</td>
<td>0.3m topsoil</td>
</tr>
<tr>
<td></td>
<td>0.3-0.8m yellow-brown silty clay on to sands and gravels</td>
</tr>
<tr>
<td>J</td>
<td>0.2m topsoil</td>
</tr>
<tr>
<td></td>
<td>0.2-0.7m yellow-brown silty clay on to sands and gravels</td>
</tr>
<tr>
<td>L</td>
<td>0.35m topsoil</td>
</tr>
<tr>
<td></td>
<td>0.35-0.7m yellow-brown silty clay</td>
</tr>
<tr>
<td></td>
<td>0.7-0.9m yellow-brown sandy clay with increasing sand content below 0.9m sands and gravels</td>
</tr>
</tbody>
</table>

Auger survey

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>high/upright crop</td>
</tr>
<tr>
<td></td>
<td>0.95m overburden of topsoil and yellow-brown silty clay</td>
</tr>
<tr>
<td></td>
<td>0.95-1.3m increasing sand and gravel content</td>
</tr>
<tr>
<td></td>
<td>1.3m sands and gravels</td>
</tr>
<tr>
<td>D</td>
<td>high/upright crop</td>
</tr>
<tr>
<td></td>
<td>1.1m overburden of topsoil and yellow-brown silty clay</td>
</tr>
<tr>
<td></td>
<td>1.1-1.35m increasing sand content on to sands and gravels</td>
</tr>
<tr>
<td>E</td>
<td>high/upright crop</td>
</tr>
<tr>
<td></td>
<td>1.3m overburden of topsoil and yellow-brown silty clay on to sands and gravels; no sign of organic deposits/palaeochannel</td>
</tr>
<tr>
<td>G</td>
<td>stunted crop</td>
</tr>
<tr>
<td></td>
<td>0.75m overburden of topsoil and yellow-brown silty clay on to sands and gravels</td>
</tr>
<tr>
<td>I</td>
<td>high/fallen crop</td>
</tr>
<tr>
<td></td>
<td>1.1m overburden of topsoil and yellow-brown silty clay on to sands and gravels</td>
</tr>
<tr>
<td>K</td>
<td>high/fallen crop</td>
</tr>
<tr>
<td></td>
<td>1.25m overburden of topsoil and yellow-brown silty clay on to sands and gravels</td>
</tr>
</tbody>
</table>
Figure 2 Application area with test-pits, auger survey, depth of overburden and Mineral Surveying Service's topographic contour survey.

Key
- B 1.3m Auger-hole with depth of overburden
- 0.9m Test-pit with depth of overburden
- 1.3m Quarry face / Ellington Brook recorded depth of overburden

Contour line from MSS' topographic survey (not tied in to OD)
Edge of application area

Scale = 1:2500
Figure 1 Location map and areas of archaeological interest
Figure 4 Blaeu's map of Huntingdonshire 1646