Archaeological Field Unit

Heath Farm to Wandlebury Overhead Line Refurbishment - An Archaeological Watching Brief

M. Alexander
1993

Cambridgeshire Archaeology
Report No. A12

Commissioned By Eastern Electricity
Heath Farm to Wandlebury Overhead Line Refurbishment-An Archaeological Watching Brief

M. Alexander BA

1993

Report No.A 12

Archaeological Field Unit
Cambridgeshire Archaeology
Fulbourn Community Centre
Haggis Gap, Fulbourn
Cambridgeshire CB2 5HD
Tel (0223) 881614
Fax (0223) 881678
Heath Farm to Wandlebury O/H Line Refurbishment

TL 4953

Contents

Summary
Introduction
Background
Methods
Results
Conclusions
Bibliography
Acknowledgements
Glossary of Archaeological Terms

Illustrations

Figure 1. Site Location, showing Cable Replacement Line.
Figure 2. Sketch Section, North-east facing, showing cut [4]

Summary

In June 1993 Cambridgeshire Archaeology completed an archaeological watching brief on behalf of Eastern Electricity for the refurbishment of the cable between Wandlebury and Heath Farm, in the parish of Stapleford. Two features of indeterminate age were noted at the south-east end.

Introduction

During June 1993, Eastern Electricity refurbished 600m of the overhead line running between Wandlebury and Heath farm, both in the parish of Stapleford. Beginning from a point approximately 275m south-east of Wandlebury, the line ran north-west to Wandlebury, skirting round the outer ditch of the fort, and continuing north-west in a straight line to Heath Farm. The underlying geology was Upper Cretaceous middle chalk and glacial gravels. There was potential for archaeological activity to be uncovered from around the edge of the Iron-Age fort, and to the south-east of it.

Background

The electricity cable runs around the south-west side of the early Iron-Age hillfort occupying the crest of the Gog Magog Hills. The fort is circular in plan, with a triple bank and ditch (multivallate) system. The site was probably first fortified during the 3rd century BC, with the construction of a bank and ditch which still survives. An inner bank and ditch existed until the 18th century when the area was landscaped for the house built for Lord Godolphin. Excavations revealed a large number of pits and post-
Figure 1. Site Location, showing Cable Replacement Line.
holes from the initial period of occupation of the interior (Hartley, 1957), followed by a period of abandonment, after which the fort was re-occupied and re-fortified, in the early 1st century AD. There is also evidence for occupation during the Roman period, although no structures have been found. The Roman road known as Worsted (or Wool) Street lies approximately half a mile to the north-west of the fort.

Immediately outside the hillfort bank to the south, two human skeletons were uncovered during the extension of the cricket pitch. Five more skeletons were revealed when high winds uprooted trees in January 1976. These individuals are assumed to be Iron-Age, although no artefacts were found to date them (Taylor and Denston, 1977).

Methods

Work commenced, on 15th June 1993, after scrub clearance. A length of trench was opened from the south-east end of the line to just before the roadway from the car park. The trench was dug rapidly using a small toothed bucket, with the resulting trench being barely 0.50m wide, and varying from 0.40m to 0.70m in depth. The chalky subsoil in this area smeared everything and meant that it was very difficult to detect all but the largest features within such a narrow trench. In the second section, dug through glacial gravels (observed by S. Bray), visibility was slightly better.

Two features were observed in the first part. The first was photographed, the second cleaned, photographed and recorded using standard Cambridgeshire Archaeological recording methods.

Figure 3. Sketch Section, North-East Facing, showing Cut [4]
The second part of the cable was laid during 21st and 22nd June, from a point approximately 30m south from where the line branches off the curve of the fort towards Heath Farm. Trenching progressed in a southerly direction to join up with the area already dug. The method in this area involved opening a length of trench with a rotary toothed machine, laying the cable, and backfilling before the end of the day. The width of the trench was 0.30m, and the depth was approximately 0.70m.

Results

Southern Part

Topsoil: 0.10-0.20m of brown, soft, clayey silt with frequent organic inclusions including roots.
Subsoil: Solid chalk dug to a maximum depth of 0.50m. Varied from compact to slightly friable throughout the trench section.

Approximately 28m from the roadway, the subsoil abruptly changed to a yellowish brown clayey silt. A section 3.3m deep and 2.5m long was dug by the machine which showed this subsoil to a depth of 0.20m overlying 0.40m of brown clayey silt with frequent chalk fragments. Below this the soil became increasingly yellow-brown, and clayey to an almost pure clay. Very large flint nodules (< 0.30m) were observed towards the bottom. In the last few metres towards the path the subsoil became a chalky, clayey silt.

Two features were observed in this section: Cut [2], [see 2, on Fig. 1] a steep sided cut, north-west side almost vertical, south-east side slopes steeply to narrow bottom. Depth of cut: 0.50m, width: 0.25m. Filled with (1), a brown to dark brown, silty clay with frequent roots and occasional small chalk fragments. The feature lay approximately 2m from south-east end of the trench.

Cut [4], [see 4 on Fig. 1 and Fig. 2] Gently sloping cut with a small depression in the bottom. Topsoil rises as a low mound over the cut. Maximum height of mound above cut: 0.26m, maximum depth of cut: 1.5m. Width of cut: 2.2m. Filled with (3), a pale brown slightly clayey silt with frequent small and medium decayed chalk fragments. Part of a linear feature of unknown date running obliquely north-south across the trench. Feature lay 10.20m from the field edge at south-east end of the trench.

Northern Part (observed and recorded by S. Bray)

First 70m moving south-
Topsoil: “modern” makeup of brick, tile etc., 0. 25-0.30m deep.
Subsoil: compact, orange-brown silt (non-plastic, non-sticky, frequent small-medium flint stones [35%] and frequent small-large roots [65%]). Subsoil extends below bottom of trench.

Next 40m-
Topsoil increases in depth to 0.70m, decreasing again to 0.20m before reaching the road [see a on Fig. 1]

Section through road-
Gravel metalling, 0.20m thick, overlying 0.20m make-up of “modern” rubbish, over thick silt layer.
South of the road-
Topsoil: 0.70m thick, mid brown, loose humic silt (non-plastic, non-sticky), small-medium stones (15%), frequent small-large roots (75%).
Subsoil: orange-brown silt layer, described above. No features or artefacts found.

Conclusions

The watching brief of the laying of new cable by Eastern Electricity revealed two features, both undated, towards the south-east end of the cable line. Cut [2] appears to be a small feature of unknown function. Cut [4] appears to be part of a low bank running approximately north-south. Its significance cannot be assessed without accompanying dating evidence. In the northern part of the cable trench the layer of modern material reflects the proximity of modern buildings.

Bibliography

Acknowledgements

Eastern Electricity for funding this brief

Tim Reynolds, Project Manager

Simon Bray, co-Supervisor
GLOSSARY OF ARCHAEOLOGICAL TERMS

Artefact. Any object made by people. Generally, this word is used for finds such as pottery, stone tools, or metal objects, but it can be used in a much wider context in that the landscape we have today is a product of human activity and is thus an artefact itself.

Iron Age. Prehistoric period c. 700 BC - AD 43 when iron was used extensively for tools and weapons. The period traditionally ends with the Roman invasions of AD 43 but in fact there was a considerable time of adjustment after this date when the Iron Age way of life continued with little change from Roman influence.

Modern: The period since modern industrialisation, roughly corresponding to 1800 onwards.

Roman. Historic period AD 43 - 410 when much of Britain was part of the Roman empire. The term Romano-British is now widely used to describe the people of this period, as few were Roman themselves, but they were a provincial manifestation of the empire developing in a unique way. AD 410 was the date the legions were withdrawn, but the Romano-British culture continued for some time into the 5th century in tandem with Anglo-Saxon migration.

Sites and Monuments Record (SMR): A computer and paper database maintained by the County Archaeology Office of all known historic sites and individual findspots. This system can be applied in response to any query concerning the heritage of the county, e.g. the archaeology of a piece of land can be ascertained in response to a planning application and the archaeological requirement if needed can then be stated by the County Archaeologist.

Stratigraphy: Order and relative position of strata. Deposits in archaeological sites will be layered one on top of another, with the highest layer being the latest being the latest deposits, thus giving a chronological relationship to the layers and the artefacts within them. Features (such as ditches, pits, or walls) cut through these layers will obviously date to later events, and will in turn contain their own discrete sequence of deposits. On the other hand features that have been covered by layers are obviously earlier than the deposition of those layers that seal them.